دانلود پایان نامه های دانشگاه ها

دانلود متن کامل با فرمت ورد- پایان نامه های دانشگاه ها

دانلود پایان نامه های دانشگاه ها

دانلود متن کامل با فرمت ورد- پایان نامه های دانشگاه ها

دانلود متن کامل با فرمت ورد- پایان نامه های دانشگاه ها
همه رشته ها : مدیریت حقوق روانشناسی حسابداری برق عمران کامپیوتر روانشناسی حسابداری مدیریت ادبیات تاریخ فلسفه فقه الهیات

کلمات کلیدی
آخرین مطالب

۹۶۳ مطلب در مرداد ۱۳۹۵ ثبت شده است

  • ۰
  • ۰

پایان­نامه دوره‌ی کارشناسی ارشد مهندسی برق-قدرت

 

طراحی بهینه و آنالیز ژنراتور سنکرون مغناطیس دائم روتور بیرونی برای توربین­های بادی

 

استاد راهنما:

دکتر محمد اردبیلی

 

 

 

 

بهمن 1393

تکه هایی از متن به عنوان نمونه :

چکیده

امروزه ژنراتورهای سنکرون آهنربای دائم با توجه به ویژگی‌هایی همچون وزن کمتر، بازده بالاتر، و چگالی توان بالاتری که نسبت به انواع ژنراتورهای مرسوم دیگر دارند، مورد توجه قرار گرفته‌اند. مزایای این ژنراتورها طوری است که آنها را برای کاربرد در توربین بادی مناسب می‌سازد. از طرفی با توجه به سهولت افزایش تعداد قطب در آنها، برای کاربردهای سرعت پایین همچون اتصال مستقیم بسیار مناسب می‌باشند.

در این تحقیق طراحی یک ژنراتور سنکرون شار شعاعی آهنربای دائم kW1 و rpm125، برای اتصال مستقیم به توربین بادی به منظور حصول ولتاژ سینوسی کامل انجام شد. از مقایسه‌ی ساختارهای گوناگون ماشین‌های سنکرون و با توجه به کاربرد مورد نظر این ماشین‌ها، ساختار روتور بیرونی و آهنربای سطحی و سیم بندی متمرکز استاتور انتخاب گردید. سپس با در نظر گرفتن بازده و چگالی توان به عنوان توابع هدف و با استفاده از الگوریتم ژنتیک، نسبت به بهینه‌سازی طراحی اقدام شد. بهینه سازی همزمان توابع هدف با یک تابع شایستگی نوین که توسط آن امکان اولویت‌بندی بهینه‌سازی توابع هدف فراهم می‌شود، انجام شد. در خاتمه ژنراتور بهینه با استفاده از روش اجزای محدود دو‌بعدی شبیه‌سازی و مورد ارزیابی قرار گرفت.

لازم به ذکر است در این پروژه از نرم‌افزار MATLAB R2011a به منظور بهینه‌سازی از روش الگوریتم ژنتیک و نیز از نرم‌افزار Ansoft Maxwell 14.0 برای شبیه‌سازی از روش اجزای محدود دو‌بعدی استفاده شده است.

کلمات کلیدی: توربین بادی اتصال مستقیم، ماشین‌های سنکرون آهنربای دائم، ژنراتور آهنربا دائم روتور بیرونی، معادلات ابعاد ماشین‌های آهنربای دائم، بهینه‌سازی با روش الگوریتم ژنتیک، روش اجزای محدود دو بعدی.

 

فهرست مطالب

 

فصل اول: مقدمه.. 2

1-1-انواع توربین‌های بادی سرعت متغیر و ژنراتورهای استفاده شده در آنها   3

1-1-1-ژنراتور القایی………………………….……………………………………….. 3

1-1-1-1- ژنراتورهای القایی قفس سنجابی……………….………………………………    4

1-1-1-2- ژنراتورهای القایی روتور سیم بندی شده5……………………………………………

1-1-1-3- ژنراتورهای القایی با تغذیه دوگانه6……………….………………………………

1-1-2-توربین­های بادی مجهز به ژنراتور سنکرون……………………………………….. 7

1-1-2-1- ژنراتور سنکرون با تحریک کلاسیک……………..…………………………….. 8

1-1-2-2- ژنراتور سنکرون با مغناطیس دائم……………..…………………………….. 8

1-2-خلاصه معیا و مزایای انواع ساختارهای توربین­های بادی…………………………….. 4

1-3-تاریخچه‌ی ماشین‌های آهنربای دائم روتور بیرونی…………………..…………………12

1-3-1- مقایسه انواع ماشین‌های آهنربای دائم………………………………………..13

1-3-2- بررسی عوامل انتخاب ژنراتور سنکرون آهنربای دائم با ساختار روتور بیرونی………16

1-3-3- روش‌های تحلیل و بهینه‌سازی……………………………………………….17

1-4-ساختار پایان نامه 19……………………………………..…………………..………

فصل دوم: بررسی ساختار ومزایا ژنراتور روتور بیرونی………………………………………….22

2-1- ساختار ژنراتور مغناطیس دائم روتور بیرونی………………………………………    22

2-2- مزیت­های ژنراتور روتور بیرونی ……………………..……………………………    25

2-2-1- افزایش سطح مفید روتور برای افزایش تعداد قطب ژنراتور   26

2-2-2- کاهش طول کل مسیر مغناطیسی.. 27

2-2-3- کاهش ناحیه انتهایی سیم­پیچی استاتور.. 28

2-2-4- ساخت و خنک­سازی ساده­تر آهنربا.. 29

2-3- انواع مواد مصرفی ژنراتور آهنربای دائم روتور بیرونی30……………..…………………..

فصل سوم: طراحی ژنراتور سنکرون آهنربای دائم با ساختار روتور بیرونی.. 33

3-1- طراحی بر اساس کاربرد ژنراتور سنکرون آهنربا دائم در توربین بادی   33

3-1-1- تعیین تعداد قطب.. 34

3-2- معادلات ابعاد اصلی ماشین‌های سنکرون آهنربای دائم………………………………..34

3-2-1- تعیین فاصله هوایی.. 39

3-2-2- محاسبه‌ی ابعاد کلی شیار استاتور.. 41

3-3- محاسبه‌ی پارامترهای الکتریکی……………………………………………………44

3-3-1- نیرو محرکه‌ی القایی.. 44

3-3-2- راکتانس سنکرون.. 47

3-3-3- ولتاژ خروجی.. 50

3-3-4- محاسبه‌ی بازده.. .51

3-3-5- محاسبه‌ی چگالی توان.. 52

3-4- طراحی سیم‌پیچی………………………………………………………………. 53

3-4-1- سیم‌پیچی متمرکز و توزیع شده.. 53

3-4-2- سیم‌پیچی گام کامل و گام کسری.. 55

3-4-3- تعداد لایه‌های سیم‌پیچی.. 56

3-4-4- انتخاب و طراحی سیم‌پیچی.. 58

3-5- انتخاب ترکیب مناسب تعداد قطب و شیار…………………………………………. 59

3-6- روند طراحی ژنراتور‌های سنکرون آهنربای دائم……………………………………. 63

فصل چهارم: بهینه‌سازی طراحی با استفاده از روش الگوریتم ژنتیک   67

4-1- انواع روش‌های بهینه‌سازی…………………………………………………………67

4-1-1- الگوریتم‌های بهینه‌سازی قطعی و احتمالی.. 68

4-1-2- الگوریتم‌های بهینه‌سازی مستقیم و غیر مستقیم.. 68

4-1-3- الگوریتم‌های بهینه‌سازی هیوریستیک و متاهیوریستیک   69

4-1-4- الگوریتم بهینه‌سازی با روش جست‌وجوی اتفاقی.. 69

4-1-5- الگوریتم هوک و جیوز.. 70

4-1-6- روش پاول.. 71

4-1-7- الگوریتم ژنتیک (GA).. 72

4-1-8- سردسازی (تبرید) شبیه‌سازی شده (SA).. 73

4-1-9- الگوریتم بهینه‌سازی انبوه ذرات (PSO).. 73

4-2- مقایسه و انتخاب روش بهینه‌سازی مناسب…………………………………………… 74

4-2-1- مزایای الگوریتم ژنتیک در مقایسه با سایر روش‌های بهینه‌سازی.. 75

4-2-2- معایب الگوریتم ژنتیک در مقایسه با سایر روش‌های بهینه‌سازی.. 76

4-3- الگوریتم ژنتیک…………………………………………………………………. 77

4-4- توابع هدف و پارامترهای بهینه‌سازی………………………………………………. 78

4-5- بهینه‌سازی تک تابع هدفه (بازده)…………………………………………………    87

4-6- بهینه‌سازی چند تابع هدفه (بازده و چگالی توان)…………………………………….90

فصل پنجم: شبیه‌سازی ژنراتور بهینه و حصول ولتاژ.. 97

5-1- معرفی روش اجزای محدود (FEM)………………………………………………    98

5-1-1- مش‌بندی ماشین‌های آهنربای دائم.. 100

5-1-2- فرمول‌بندی مساله جهت حل مساله میدان.. 101

5-1-3- اعمال روابط به مش‌ها و حصول دستگاه معادلات.. 104

5-2- شرایط مرزی106……………………………………………………………………

5-3- مدلسازی ژنراتور روتور بیرونی با استفاده از FEM …………………..……………    107

5-3-1- مرحله‌ی پیش پردازش.. 108

5-3-2- مرحله‌ی پردازش.. 111

5-3-3- مرحله‌ی پس از پردازش و حصول ولتاژ.. 113

فصل ششم: نتیجه‌گیری121…………………………………………………………..………

6-1- نتیجه‌گیری122…………………………………………………………………….

6-2- پیشنهادات برای ادامه کار124……………….…….…………………………………

– مراجع………………………………………………………………..…………122


فهرست شکل‌ها

 

شکل 1-1: منحنی توسعه انرژی الکتریکی حاصل از توربین‌های بادی جهان  2

شکل 1-2: ساختار کلی توربین بادی سرعت متغیر با ژنراتور القایی قفس سنجابی. 4

شکل 1-3: توربین بادی مجهز به ژنراتور القایی. 5

شکل 1-4: ساختار کلی توربین بادی سرعت متغیر در محدوده‌ی 10 درصد سرعت نامی ژنراتور. 5

شکل 1-5: توربین بادی مجهز به ژنراتور القایی تغذیه دوبل   6

شکل 1-6: توربین بادی مجهز به ژنراتور سنکرون روتور سیم پیچی شده  8

شکل 1-7: توربین بادی مجهز به ژنراتور سنکرون مغناطیس دائم  9

شکل 1-8: ساختمان داخلی ماشین های شار محوری. 15

شکل 1-9: : قسمتی از یک فاز ماشین با شار اریب. 15

شکل 1-10: ساختار ماشین با شار عرضی. 16

شکل 2-1: برش محوری ژنراتور. 22

شکل 2-2: ساختار کلی یک ماشین روتور بیرونی. 23

شکل 2-3: نمایی از ماشین آهنربا دائم روتور بیرونی. 24

شکل 2-4: دید از بالای اجزا محوری ژنراتور. 25

شکل 2-5: دید از بالا ژنراتور. 26

شکل 2-6: برش عرضی ژنراتور روتور بیرونی مغناطیس دائم  27

شکل 2-7: برشی از ژنراتور روتور بیرونی با ناحیه انتهایی سیم پیچی. 28

شکل 2-8: منحنی B-H در دماهای مختلف. 29

شکل 3-1: نمای خطی قسمتی از ژنراتور روتور بیرونی. 38

شکل 3-2: نمای دو بعدی ژنراتور روتور بیرونی و قطر خارجی روتور و استاتور. 40

شکل 3-3: ابعاد شیار در قطر داخلی استاتور. 41

شکل 3-4: انواع دندانه. 41

شکل 3-5: مورب‌سازی شیار استاتور در ماشین‌های آهنربای دائم  47

شکل 3-6: نحوه مورب‌سازی آهنربا در ماشین‌های آهنربای دائم  47

شکل 3-7: مدار معادل ژنراتور سنکرون تک‌فاز. 50

شکل 3-8: طول یک حلقه‌ی سیم‌پیچی متمرکز در ماشین. 51

شکل 3-9: سیم‌پیچی متمرکز و توزیع شده. 55

شکل 3-10: سیم‌پیچی گام کامل و گام کسری. 56

شکل 3-11: سیم‌پیچی تک‌لایه و دولایه. 57

شکل 3-12: الگوی سیم­پیچی دولایه. 58

شکل 4-1: منحنی الف) بازده و ب) چگالی توان بر حسب بارپذیری مغناطیسی ویژه. 80

شکل 4-2: منحنی الف) بازده و ب) چگالی توان بر حسب قطر خارجی  81

شکل 4-3: منحنی الف) بازده و ب) چگالی توان برحسب نسبت قطر داخلی به خارجی. 82

شکل 4-4: منحنی الف) بازده و ب) چگالی توان برحسب تعداد دور سیم‌پیچی. 84

شکل 4-5: منحنی بازده برحسب تعداد دور سیم‌پیچی و گام قطب  85

شکل 4-6: منحنی بازده برحسب نسبت قطرو بارپذیری مغناطیسی ویژه   85

شکل 4-7: منحنی بازده برحسب بارپذیری مغناطیسی ویژه و قطر خارجی  85

شکل 4-8: منحنی بازده برحسب تعداد دور سیم‌پیچی و قطر خارجی  86

شکل 4-9: مراحل بهینه‌سازی الگوریتم ژنتیک. 88

شکل 4-10: تغییرات تابع هدف درروند بهینه‌سازی بازده ژنراتور با 48 قطب و 72 شیار. 89

شکل 4-11: فضای جست‌وجو و مرز پارتو. 91

شکل 4-12: مرز پارتو برای بهینه‌سازی دو تابع هدفه (بازده و چگالی توان). 92

شکل 4-13: بازده بهبود یافته برحسب نسبت . 94

شکل 4-14: چگالی توان بهبود یافته برحسب نسبت . 95

شکل 4-15: تغییرات تابع شایستگی در بهینه‌سازی بازده و چگالی توان … 95

شکل 5-1: چند نمونه از مش‌بندی‌های رایج. 100

شکل 5-2: مش‌بندی یک ناحیه‌ی دلخواه از فضا. 104

شکل 5-3: نمای ساختار استاتور. 108

شکل 5-4: نمای شیارهای استاتور. 109

شکل 5-5: نمای هسته‌ی روتور و آهنربا‌های مربوط به آن. 109

شکل 5-6: نمای ژنراتور روتور بیرونی با 48 قطب و 72 شیار  110

شکل 5-7: ژنراتور و مرزهای آن با محیط خارج. 111

شکل 5-8: مش‌بندی ساختار ژنراتور. 112

شکل 5-9: شدت میدان مغناطیسی در هر نقطه از ساختار ژنراتور  113

شکل 5-10: توزیع چگالی شار مغناطیسی در هر نقطه از ساختار ژنراتور. 114

شکل 5-11: منحنی چگالی شار مغناطیسی فاصله‌هوایی در یک گام قطب  114

شکل 5-12: جهت عبور شار در هر نقطه از ساختار ژنراتور از زوایای مختلف. 116

شکل 5-13: چگالی جریان درکویل‌ها . 117

شکل 5-14: شار پیوندی مربوط به هر سه فاز در سرعت نامی  118

شکل 5-15: EMF سه فاز در سرعت نامی. 118

شکل 5-16: EMF سه فاز در سرعت 90 دور در دقیقه. 119

شکل 5-17: جریان سه فاز متصل به بار 100 اهمی. 120

شکل 5-18: منحنی بازده بر حسب سرعت ژنراتور. 120

 


فهرست جداول

 

جدول 1-1: مزایا و معایب انواع ژنراتورهای توربین بادی  11

جدول 3-1: مقادیر Ki و Kp برای شکل موج‌های پرکاربرد. 36

جدول 3-2: مقایسه‌ی سیم‌پیچی تک لایه و دولایه. 57

جدول 3-3: ترکیب‌های ممکن تعداد قطب و شیار با در نظر گرفتن ½¼<q<  61

جدول 3-4: ضریب سیم‌پیچی (Kw1) برای تعداد قطب و شیار مختلف  62

جدول 3-5: مقدار پارامتر CT برای تعداد قطب و شیار مختلف  63

جدول 3-6: مشخصات ژنراتور روتور بیرونی آهنربای دائم. 64

جدول 3-7: جزئیات طراحی ژنراتور روتور بیرونی آهنربا دائم  65

جدول 4-1: محدودیت‌ها و الزامات بهینه‌سازی طراحی. 86

جدول 4-2: تعداد 5 کروموزوم برتر معرفی شده در 5 مرتبه اجرای الگوریتم بهینه‌سازی بازده. 89

جدول 4-3: طراحی ژنراتور روتور بیرونی با 48 قطب و 72 شیار، پس از بهینه‌سازی بازده. 90

جدول 4-4: مقدار بازده و چگالی توان قبل و بعد از بهینه‌سازی  93

جدول 4-5: کنترل مقدار بهبود بازده و چگالی توان با تغییر دادن مقدار ضرایب a و b. 94

جدول 4-6: طراحی ژنراتور روتور بیرونی بهینه شده با 48 قطب و 72 شیار پس از بهینه‌سازی بازده و چگالی توان. 96

 برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

پایان نامه

مقطع کارشناسی ارشد

 

رشته: مهندسی برق قدرت

 

عنوان : کاهش انحراف فرکانس یک ریزشبکه متصل به شبکه اصلی با استفاده از منطق فازی و الگوریتم PSO

 

 

   استاد راهنما : دکتر عبدالرضا شیخ الاسلامی

 

   استاد مشاور: مهندس عماد صمدائی

 

تکه هایی از متن به عنوان نمونه :

چکیده

امروزه به علت به وجود آمدن ریز شبکه­ها و گرایش وتمایل متصل شدن این شبکه­ها به هم و شبکه اصلی مسائلی از قبیل پایداری فرکانسی و ولتاژی مطرح شده است که کارهای زیادی در راستای کنترل فرکانس این قبیل سیستم­ها صورت گرفته است که روش­های مختلفی را برای شبکه­های مختلف اتخاذ کرده­اند از جمله کنترل کننده PI وکنترل کننده FGSPI و PID-Fuzzy و….

در این پایان نامه به ارائه یک سیستم کنترلی مناسب در یک شبکه دو ناحیه­ای که ناحیه اول شامل منابع تولید انرژی از انرژی­های تجدید­پذیر از جمله واحد بادی و خورشیدی و ناحیه دوم شامل منابع تولید انرژی از انرژی­های فسیلی از جمله واحد دیزلی، بخار و آبی می­باشد پرداخته شده است. ابتدا به مدل­سازی دینامیکی مناسب از اجزای این سیستم مبادرت شده است و براساس مدل دینامیکی ارائه شده، اقدام به طراحی کنترل­کننده صورت گرفته است. سه نوع استراتژی کنترلی برای این سیستم، طراحی و در محیط سیمولینک متلب شبیه­سازی شده است. اولین استراتژی کنترلی، طراحی کنترل­کننده کلاسیک(PID) می­باشد. دومین استراتژی کنترلی، طراحی کنترل­کننده فازی می­باشد و سومین استراتژی کنترلی بهینه­سازی کنترل­کننده فازی با الگوریتم هوشمند PSO می­باشد. مشاهده خواهید کرد در استراتژی اول انحراف فرکانس T-Line به 0.06 هرتز می­رسد و زمان زیادی طول می­کشد که به مقدار پایدار خود صفر برسد و در استراتژی دوم مشاهده خواهید کرد که کنترل کننده فازی توانسته این نتیجه را بهبود ببخشد به طوری که انحراف فرکانس را به 0.018 هرتز رسانده و زمان 10 ثانیه طول کشیده تا به حالت ماندگار خود یعنی 0.012 هرتز برسد یعنی نتیجه در استراتژی دوم به نسبت استراتژی اول برابر شده است. از آنجایی که حالت پایدار در استراتژی دوم مقدار مطلوبی نبوده در استراتژی سوم سعی به بهبود آن شده است. مشاهده خواهید کرد انحراف فرکانس T-Line نسبت به استراتژی دوم به نصف کاهش یافته به طوری که ماکزیمم مقدار 0.009 هرتز را تجربه کرده و زمان 6.2 ثانیه طول کشیده به حالت پایدار خود مقدار صفر برسد. در نهایت قابل ذکر است که کنترل کننده فازی بهینه شده با الگوریتم هوشمند pso توانسته انحراف فرکانس را نسبت به دو کنترل کننده دیگر به طور مشهودی بهبود دهد.

 

کلمات کلیدی: کنترل فرکانس- الگوریتم هوشمند PSO – دو ناحیه­ای- کنترل کننده Fuzzy – کنترل کننده کلاسیک PID

 

فهرست مطالب

عنوان                                                                                                  صفحه

فصل اول: مقدمه و کلیات تحقیق

1-1 مقدمه……………………………….. 2

1-2 اهداف پایان نامه……………………… 3

1-3 ساختار پایان نامه ……………………. 4

فصل دوم: پیشینه تحقیق

2-1 مقدمه……………………………….. 6

2-2 تولید پراکنده ……………………….. 6

2-2-1 تعریف تولید پراکنده………………….. 6

2-2-2 انواع تولیدات پراکنده……………….. 6

2-2-3 مزایای تولیدات پراکنده …………….. 7

2-2-4 بهره­برداری از واحد­های تولید پراکنده ….. 8

2-2-5 مشارکت منابع تولید پراکنده در سیستم توزیع 8

2-3 سیستم­های مستقل و وابسته……………….. 9

2-3-1 سیستم متصل به شبکه…………………. 10

2-3-2 مفهوم ناحیه کنترلی در سیستم قدرت…….. 10

2-4 سیستم ترکیبی(هیبریدی)………………… 10

2-4-1 مزایای ریز شبکه­ها و چالش­های سیستم­های ترکیبی   12

2-5 انرژی­های تجدید­پذیر………………….. 12

2-5-1 انرژی باد…………………………. 13

2-5-1-1 مزایای بهره برداری از انرژی بادی….. 14

2-5-1-2 توربین­های بادی متصل به شبکه ……… 15

2-5-1-3 توربین بادی منفرد متصل به شبکه……. 15

2-5-1-4 توربین بادی یا مزارع بادی متصل به شبکه 16

2-5-2 انرژی خورشیدی……………………… 16

2-5-2-1 فتوولتائیک………………………. 17

2-5-2-2 کاربرد سلول­های فتوولتائیک………… 18

2-5-2-3 مزایا و معایب استفاده از سیستم­های فتوولتائیک    19

2-5-2-4 مشکلات نیروگاه خورشیدی متصل به شبکه… 20

2-6 سیستم­های ترکیبی در شبکه قدرت…………. 20

2-7 نیروگاه آبی…………………………. 22

2-7-1 مزایای نیروگاه آبی…………………. 23

2-7-2 معایب نیروگاه آبی………………….. 23

2-8 نیروگاه­های دیزلی…………………….. 24

2-9 کنترل فرکانس شبکه……………………. 25

2-9-1 اهداف کنترل فرکانس شبکه……………. 25

2-10کنترل کننده­ها………………………… 29

2-11 کنترل کلاسیک………………………… 29

2-11-1 زمان صعود………………………… 29

2-11-2 زمان نشست………………………… 29

2-11-3 بیشترین فراجهش……………………. 30

2-11-4 انتگرال قدر مطلق خطا………………. 30

2-12 تنظیم پارامتر­های کنترل کننده PID با روش زیگلرنیکلز 31

2-13 سیستم­های Fuzzy……………………….. 32

2-14 طراحی کنترل کننده­های فازی…………… 33

2-15 ساختار یک کنترل کننده فازی………….. 33

2-15-1 پیش پردازنده……………………… 34

2-15-2 فازی کننده……………………….. 34

2-15-3 پایگاه قواعد……………………… 34

2-15-4 موتور استنتاج…………………….. 34

2-15-5 غیر فازی ساز……………………… 35

2-15-6 پس پردازنده………………………. 35

2-16 الگوریتم بهینه­سازی ازدحام ذرات………. 37

2-17 تاریخچه الگوریتم بهینه­سازی ازدحام ذرات.. 39

2-18 هوش جمعی…………………………… 40

2-19 پارامتر­های الگوریتم بهینه­سازی ازدحام ذرات 43

2-20 الگو بهینه محلی و بهینه سراسری………. 46

فصل سوم: ساختار شبکه

3-1 ساختار شبکه پیشنهادی…………………. 49

3-1-1 مدل تولید واحد بخار………………… 50

3-1-2 مدل تولید واحد هیدرو……………….. 50

3-1-3 مدل دیزل ژنراتور…………………… 51

3-1-4 مدل تولید ژنراتور توربین بادی………. 52

3-1-5 مدل تولید توان فتوولتائیک………….. 54

3-2 مدل و روش کنترلی پیشنهادی……………. 54

فصل چهارم: نتایج شبیه­سازی

4-1 مقدمه………………………………. 57

4-2 ساختار شبکه…………………………. 57

4-3 سیستم با کنترل کننده PID……………… 59

4-4 بهره کنترل کننده کلاسیک……………….. 60

4-5 مقایسه نتایج کنترل کننده کلاسیک با کنترل کننده فازی  61

4-5-1 ساختار کنترل کننده فازی……………. 61

4-5-2 بهره کنترل کننده فازی………………. 62

4-5-3 بخش فازی ساز………………………. 62

4-5-4 پایگاه قواعد کنترل کننده فازی………. 64

4-6 سیستم با کنترل کننده فازی……………. 65

4-7 ساختار کنترل کننده Fuzzy-pso…………….. 67

4-7-1 بهره کنترل کننده Fuzzy-pso…………….. 67

4-7-2 پارامتر­های الگوریتم بهینه­سازی ازدحام ذرات 68

4-8 سیستم در حضور کنترل کننده Fuzzy-pso ………. 69

فصل پنجم: جمع­بندی نهایی ، پیشنهادات و منابع

5-1 جمع­بندی نهایی ………………………. 73

5-2 پیشنهادات …………………………. 74

5-3 منابع………………………………. 75

 

 

 

 

 

 

 

 

 

 

 

 

 

فهرست جداول

عنوان                                                                                                  صفحه

 

جدول (2-1) تنظیم ضرایب کنترل کننده کلاسیک با استفاده از روش زیگلرنیکولز……………………………. 32

جدول(2-2) پایگاه قواعد کنترل کننده فازی….. 36

جدول (3-1) مقادیر مورد استفاده در شبکه دو ناحیه­ای پیشنهادی   55

جدول(4-1) بهره کنترل کننده PID ناحیه اول…… 61

جدول(4-2) بهره کنترل کننده PID ناحیه دوم ….. 61

جدول(4-3) بهره کنترل کننده فازی ناحیه اول… 62

جدول(4-4) بهره کنترل کننده فازی ناحیه دوم… 62

جدول(4-5) پایگاه قواعد کنترل کننده فازی …. 64

جدول(4-6) اختصارات پایگاه قواعد کنترل کننده فازی   65

جدول(4-7) بهره کنترل کننده Fuzzy,Fuzzy-pso ناحیه اول 68

جدول(4-8) بهره کنترل کننده Fuzzy,Fuzzy-pso ناحیه دوم 68

جدول(4-9) پارامتر­های الگوریتم بهینه­سازی ازدحام ذرات     69

 برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

کلیدزنی بهینۀ انتقال با استفاده از مدل­های تعادل در بازارهای برق

 

 

پایان­نامه کارشناسی ارشد مهندسی برق – قدر

 

 

 

استاد راهنما

دکتر محمد امین لطیفی

 

 

 

بهار 1394

تکه هایی از متن به عنوان نمونه :

فهرست مطالب

عنـــوان                                                             صفحه

فهرست مطالب…………………………………….. هشت

فهرست شکل‌ها…………………………………… یازده

فهرست جدول‌ها………………………………….. سیزده

لیست نمادها………………………………….. چهارده

چکیده……………………………………………. 1

فصل اول: مقدمه

1-1-……………………………………………………………………………………………………… پیشگفتار 2

1-2-…………………………………………………………………………………………….. پیشینه تحقیق 3

1-2-1-………………………… کلیدزنی انتقال در دیدگاه سنتی بهره‌برداری 3

1-2-2-…………………………………………………………………… کلیدزنی بهینه انتقال 4

1-2-3-…………………………… تأثیر ساختار سیستم انتقال بر قدرت بازار 6

1-3-…………………………… مدل‌سازی رفتار بازار برق در شرایط رقابت ناقص 8

1-4-……………………………………………………………………………. تعریف مسأله و نوآوری 12

1-5-……………………………………………………………………………………. ساختار پایان‌نامه 14

فصل دوم: بررسی اثر کلیدزنی انتقال بر قدرت بازار

2-1-……………………………………………………………………………………………………… پیشگفتار 15

2-2-……………………………………………………………………………………………….. مثال روشنگر 15

2-3-…………………………………………………………………………………………. مرز رقابت (CB) 17

2-4-………………………………………………….. مسأله CB با در نظر گرفتن TS (ECB) 19

2-5-…………………………………………………………… تبدیل مسأله ECB به مسأله MILP 20

2-6-…………………………………………………………………………………………….. مطالعات عددی 23

2-6-1-………………………………………………………………. معرفی شبکه تست IEEE-14 Bus 23

2-6-2- نتایج عددی حاصل از شبیه‌سازی‌ها بر روی شبکه تست IEEE-14 Bus 25

2-6-3-…………………………………………………………….. معرفی شبکه تست IEEE-118 Bus 35

2-6-4-………………………. نتایج شبیه‌سازی‌ها بر روی شبکه تست IEEE-118 Bus 35

2-6-5-.. تحلیل حساسیت نتایج به پارامترهای خطی‌سازی و مدل مسأله 41

2-7-……………………………………………………………………………… جمع‌بندی و نتیجه‌گیری 44

 

فصل سوم: کلیدزنی دوره‌ای بهینه انتقال با در نظر گرفتن تعادل در بازار برق

3-1-……………………………………………………………………………………………………… پیشگفتار 46

3-2-…………………………………………………………….. کلیدزنی دوره‌ای بهینه انتقال 47

3-3- مفروضات مسأله کلیدزنی دوره‌ای بهینه انتقال با در نظرگرفتن تعادل در بازار برق (MESOTS) 47

3-4-…………………………………………………………………….. مدل سه سطحی مسأله MESOTS 48

3-4-1- سطح اول: تصمیم به خروج خط با هدف حداقل‌سازی هزینه بهره‌برداری کل دوره 49

3-4-2-………………………………………….. سطح دوم: حداکثرسازی سود بازیگران 50

3-4-3-………………………………………………………. سطح سوم: مسأله تسویه بازار 50

3-5-……………………………………….. یکپارچه‌سازی سطح دوم و سوم مسأله MESOTS 52

3-6-………………………………. مدل‌سازی تعادل بازار در هر روز به صورت EPEC 56

3-7-……………………………………………………………………………… مسأله یکپارچه MESOTS 64

3-8-…………………………………………………….. تبدیل مسأله MESOTS به مسأله MILP 68

3-9-…………………………………………………………………………………………….. مطالعات عددی 77

3-9-1-…………………………………………………………………. معرفی شبکه تست سه شین 77

3-9-2-…………………………………………………………………… تحلیل شبکه در یک روز 79

3-9-3-…….. حساسیت تعادل بازار به پارامتر در تعادل یک روز 81

3-9-4-          MESOTS برای شبکه سه شین 87

3-10-………………………………………………………………………….. جمع بندی و نتیجه‌گیری 99

فصل چهارم: نتیجه‌گیری و پیشنهادات

4-1-………………………………………………………………………………………….. جمع‌بندی مطالب 101

4-2-…………………………………………………………………………………………………… نتیجه‌گیری 103

4-3-……………………………………………………………………………………………………. پیشنهادات 104

پیوست(الف): معرفی شاخص‌های قدرت بازار 105

پیوست (ب): مسائل بهینه‌سازی چندسطحی و مدل‌های تعادل 107

ب-1-  مسأله بهینه‌سازی مقید به مسائل بهینه‌سازی دیگر (OPcOP) 107

ب-2-  شرایط بهینگی KKT 110

ب-3-  تبدیل مسأله OPcOP با دو مسأله سطح پایین به مسأله تک سطحی 111

ب-4-  مسأله بهینه‌سازی مقید به مسائل بهینه‌سازی خطی (OPcLP) 112

ب-5-  دوگان یک مسأله بهینه‌سازی خطی 114

 

ب-6-  جایگزین کردن OPcLP با قیود اصلی، دوگان و قید دوگانگی قوی 115

ب-7-  مسأله بهینه‌سازی با قیود تعادل (MPEC) 116

ب-8-   مسائل تعادل مقید به قیود تعادل (EPEC) 117

پیوست (ج): اطلاعات شبکه IEEE-118 Bus 119

مراجع… 124

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فهرست اشکال

شکل ‏1-1 ساختار رقابتی در یک بازار لحظه‌ای مبتنی بر ساختار حوضچه 10

شکل ‏2-1 یک شبکه سه شین نمونه 16

شکل ‏2-2 نحوه تقریب تابع درجه دو مجموع توان تولیدی واحدهای هر مالک 21

شکل ‏2-3 دیاگرام خطی شبکه IEEE-14 Bus 24

شکل ‏2-4 اطلاعات خطی‌سازی مجذور توان تولیدی هر مالک 26

شکل ‏2-5 کمینه HHI در سطح بار پایه سیستم IEEE-14 Bus 28

شکل ‏2-6 بیشینه HHI در سطح بار پایه سیستم IEEE-14 Bus 29

شکل ‏2-7 کمینه HHI در سطح بار غیر پیک سیستم IEEE-14 Bus 29

شکل ‏2-8 بیشینه HHI در سطح بار غیر پیک سیستم IEEE-14 Bus 30

شکل ‏2-9 کمینه HHI در سطح بار پیک سیستم IEEE-14 Bus 30

شکل ‏2-10 بیشینه HHI در سطح بار پیک سیستم IEEE-14 Bus 31

شکل ‏2-11 نحوه خطی‌سازی توان تولیدی هر مالک در سیستم IEEE-118 Bus 37

شکل ‏2-12 کمینه HHI در سطح بار پایه سیستم IEEE-118 Bus 38

شکل ‏2-13 بیشینه HHI در سطح بار پایه سیستم IEEE-118 Bus 39

شکل ‏2-14 کمینه HHI در سطح بار غیر پیک سیستم IEEE-118 Bus 39

شکل ‏2-15 بیشینه HHI در سطح بار غیر پیک سیستم IEEE-118 Bus 40

شکل ‏2-16 کمینه HHI در سطح بار پیک سیستم IEEE-118 Bus 40

شکل ‏2-17 بیشینه HHI در سطح بار پیک سیستم IEEE-118 Bus 41

شکل ‏3-1 ساختار مسأله سه سطحی MESOTS 49

شکل ‏3-2 نحوه تبدیل یک مسأله بهینه‌سازی دو سطحی به MPEC تک سطحی 52

شکل ‏3-3 مدل EPEC 57

شکل ‏3-4 دیاگرام خطی شبکه سه شین 78

شکل ‏3-5 حساسیت تعادل در بازار به تغییرات پارامتر بدون کلیدزنی 83

شکل ‏3-6 حساسیت مجموع سود بازیگران در بازار به تغییرات پارامتر بدون کلیدزنی 83

شکل ‏3-7 حساسیت قیمت پیشنهادی ژنراتور A در بازار به تغییرات پارامتر بدون کلیدزنی 84

شکل ‏3-8 حساسیت قیمت پیشنهادی ژنراتور B در بازار به تغییرات پارامتر بدون کلیدزنی 84

شکل ‏3-9 حساسیت قیمت پیشنهادی ژنراتور C در بازار به تغییرات پارامتر بدون کلیدزنی 85

شکل ‏3-10 حساسیت قیمت در شین‌ها به تغییرات پارامتر بدون کلیدزنی 85

شکل ‏3-11 حساسیت هزینه بهره‌برداری کل به تغییرات پارامتر با کلیدزنی 86

شکل ‏3-12 حساسیت قیمت در شین‌ها به تغییرات پارامتر با کلیدزنی 86

شکل ‏3-13 ضرایب بار در طول دوره 87

شکل ‏3-14 تولید ژنراتورها بدون در نظرگرفتن TS در شرایط رقابت کامل 88

 

شکل ‏3-15 قیمت در شین‌ها بدون در نظرگرفتن TS در شرایط رقابت کامل 89

شکل ‏3-16 مجموع سود مالکین بدون در نظرگرفتن TS در شرایط رقابت کامل 90

شکل ‏3-17 تولید ژنراتورها با در نظرگرفتن TS در شرایط رقابت کامل 90

شکل ‏3-18 قیمت در شین‌ها با در نظرگرفتن TS در شرایط رقابت کامل 91

شکل ‏3-19 مجموع سود مالکین با در نظرگرفتن TS در شرایط رقابت کامل 91

شکل ‏3-20 قیمت در شین‌ها بدون در نظرگرفتن TS در شرایط رقابت ناقص 93

شکل ‏3-21 توان تولیدی ژنراتورها بدون نظرگرفتن TS در شرایط رقابت ناقص 93

شکل ‏3-22 مجموع سود مالکین بدون نظرگرفتن TS در شرایط رقابت ناقص 94

شکل ‏3-23 قیمت پیشنهادی ژنراتورها بدون نظرگرفتن TS در شرایط رقابت ناقص 94

شکل ‏3-24 توان تولیدی ژنراتورها با در نظرگرفتن TS در شرایط رقابت ناقص 96

شکل ‏3-25 مجموع سود مالکین با در نظرگرفتن TS در شرایط رقابت ناقص 96

شکل ‏3-26 قیمت در شین‌ها با در نظرگرفتن TS در شرایط رقابت ناقص 97

شکل ‏3-27 قیمت پیشنهادی ژنراتورها با در نظرگرفتن TS در شرایط رقابت ناقص 97

شکل ب-1 ساختار OPcOP مقید به n مسأله بهینه‌سازی مقیدکننده [51] 109

شکل ب-2 ساختارOPcLP مقید شده به n مسأله بهینه‌سازی خطی [51] 114

 

 

فهرست جدول‌ها

جدول ‏2–1 اطلاعات شین‌های شبکه سه شین…………………… 15

جدول ‏2–2 اطلاعات خطوط شبکه سه شین…………………….. 16

جدول ‏2–3 نتایج محاسبه قیمت‌های محلی…………………… 16

جدول ‏2–4 نتایج محاسبه قیمت‌های محلی پس از خروج یک خط……. 17

جدول ‏2–5 اطلاعات ژنراتورهای شبکه IEEE-14 Bus [60]………….. 23

جدول ‏2–6 اطلاعات خطوط شبکه IEEE-14 Bus [60]……………….. 24

جدول ‏2–7 اطلاعات بارهای شبکه IEEE-14 Bus [60]……………… 25

جدول ‏2–8 اطلاعات سناریوهای ساختار مالکیت در شبکه IEEE-14 Bus… 25

جدول ‏2–9 بازه تغییرات HHI بدون و با TS در سطح بار پایه سیستم 32

جدول ‏2–10 بازه تغییرات HHI بدون و با TS در سطح بار غیر پیک سیستم  32

جدول ‏2–11 بازه تغییرات HHI بدون و با TS در سطح بار پیک سیستم 32

جدول ‏2–12 خطوط خارج شده به منظور کمینه یا بیشینه‌سازی HHI در سطح بار پایه سیستم…………………………………………… 34

جدول ‏2–13 خطوط خارج شده به منظور کمینه یا بیشینه‌سازی HHI در سطح بار غیرپیک سیستم…………………………………………… 34

جدول ‏2–14 خطوط خارج شده به منظور کمینه یا بیشینه‌سازی HHI در سطح بار پیک سیستم…………………………………………… 34

جدول ‏2–15 اطلاعات ساختار مالکیت در شبکه IEEE-118 Bus………. 35

جدول ‏2–16 حساسیت HHI بدون و با TS در سطح بار پیک سیستم به تعداد تکه‌های خطی‌سازی…………………………………………. 43

جدول ‏2–17 حساسیت HHI بدون و با TS در سطح بار پیک سیستم به طول تکه‌های خطی‌سازی…………………………………………. 44

جدول ‏2–18 حساسیت HHI با TS در سطح بار پیک سیستم به تعداد خطوط مجاز برای TS……………………………………………… 44

جدول ‏2–19 حساسیت HHI بدون و با TS در سطح بار پیک سیستم به مدل مسأله    44

جدول ‏3–1 اطلاعات شین‌های شبکه سه شین…………………… 78

جدول ‏3–2 اطلاعات خطوط شبکه سه شین…………………….. 78

جدول ‏3–3 نحوه مالکیت واحدهای تولیدی………………….. 78

جدول ‏3–4 نتایج شبکه سه شین تحت رقابت کامل……………. 81

جدول ‏3–5 نتایج شبکه سه شین تحت رقابت ناقص…………….. 81

جدول ‏3–6 نتایج شبکه سه شین تحت رقابت کامل در یک دوره…… 88

جدول ‏3–7 نتایج شبکه سه شین تحت رقابت ناقص در یک دوره…… 95

جدول ج–1 اطلاعات خطوط شبکه IEEE-118 Bus………………….. 119

جدول ج–2 اطلاعات بارهای شبکه IEEE-118Bus……………….. 122

جدول ج–3 اطلاعات ژنراتورهای شبکه IEEE-118Bus……………. 123

 برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

پایان نامه برای دریافت درجه کارشناسی ارشد

در رشته مهندسی برق – گرایش قدرت

 

عنوان:

کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر

 

 

 

استاد راهنما:

دکتر عبدالرضا شیخ الاسلامی

 

استاد مشاور:

مهندس رویا احمدی آهنگر

 

 

1392

 

تکه هایی از متن به عنوان نمونه :

 

چکیده

در یک شبکه قدرت هر ناحیه موظّف به تأمین بار درخواستی ناحیه به همراه تضمین کیفیت توان تولیدی است. انحراف بیش از حدّ مجاز از فرکانس نامی شبکه، باعث آسیب رسیدن به تجهیزات، کاهش عملکرد بار‌های شبکه، تحمیل اضافه بار بر خطوط ارتباطی، تحریک ادوات حفاظتی شبکه و نقص عملکرد در تجهیزات الکترونیکی گشته و حتی در شرایطی سبب فروپاشی شبکه می‌گردد. هدف اصلی در کنترل بار فرکانس و در پی بروز هر تغییری در بار، بازگرداندن هرچه سریع تر فرکانس به مقدار نامی و کمینه نمودن دامنه نوسانات فرکانسی است. در کنار آن کاهش تغییرات توان انتقالی خطوط انتقال و بازگردانی سریع آن به محدوده قابل قبول دو هدف عمده کنترل خودکار تولید(AGC) را تشکیل می‌دهند.

در حال حاضر شبکه قدرت مشمول تغییراتی کلی در بدنه و ساختار خود است. این تغییرات نه به سبب مسائل مربوط به تجدید ساختار یافتن شبکه و برنامه‌ریزی‌های رقابتی است، بلکه به علّت ظهور انواع جدید ادوات تولید توان، تکنولوژی‌های جدید و حجم رو به افزایش منابع انرژی تجدیدپذیر نیز می‌باشد. نیاز فزاینده به انرژی الکتریکی در کنار ذخیره محدود سوخت فسیلی و نگرانی روبه گسترش مشکلات زیست‌محیطی ناشی از مصرف سوخت فسیلی، ضرورت استفاده از منابع انرژی تجدیدپذیر نظیر باد و خورشید و ورود آنها را به شبکه قدرت دوچندان می‌نماید. از طرفی با ظهور منابع انرژی تجدیدپذیر نظیر انرژی باد و خورشید علاقه شدیدی به بررسی تاثیرات استفاده از این منابع در بهره‌برداری و کنترل شبکه قدرت بوجود آمده است. یکپارچگی و پیوستن منابع انرژی تجدیدپذیر به شبکه قدرت فعلی گذشته از منافع اقتصادی که به دنبال دارد، اثرات پررنگی بر کیفیت توان و کنترل فرکانس شبکه باقی می‌گذارد.

افزایش استفاده از منابع انرژی تجدیدپذیر نیاز مبرم به بررسی و انجام مطالعات لازم جهت تعیین تاثیر آنها بر کنترل فرکانس سیستم قدرت را در پی داشته و اهمیّت داشتن برنامه‌های کنترلی مناسب را پر رنگ می‌نماید. در این پایان نامه تأثیر شرکت دادن منابع انرژی تجدیدپذیر در کنترل فرکانس شبکه قدرت چند ناحیه ای با ارائه برنامه های کنترلی جدید مورد مطالعه قرار می‌گیرد.

کلمات کلیدی فارسی: کنترل خودکار تولید، تولید انرژی خورشیدی، تولید انرژی بادی، سیستم ذخیره‌ساز انرژی.

فهرست مطالب

فصل اول: اصول کنترل بار فرکانس سیستم قدرت 1

1-1- مقدمه 2

1-2- ضرورت پایداری فرکانس در شبکه قدرت 3

1-3- ساختار مطالعاتی پایان‌نامه 7

فصل دوم: کنترل خودکار تولید 9

2-1- تعریف مسئله 10

2-2- پیشینه تحقیق 17

2-2-1- وضعیت فعلی استفاده از منابع انرژی تجدیدپذیر 17

2-2-2- نقش تولید خورشیدی در کنترل فرکانس شبکه 19

2-2-3- حضور تولید بادی در کنترل فرکانس 21

2-2-4- استفاده از ذخیره‌سازها 22

2-3- جمع بندی 23

فصل سوم: کنترل فرکانس تولید بادی و خورشیدی 24

3-1- مقدمه 25

3-2- مشارکت تولید بادی ژنراتور القایی دو سو تغذیه در تنظیم فرکانس شبکه 25

3-2-1- کنترل فرکانس توربین بادی سرعت متغیّر 26

3-2-2- مدل توربین بادی 27

3-2-3- مقدارسنجی انرژی چرخشی قابل دسترسی از توربین-ژنراتور 30

3-2-4- کاربرد پشتیبانی موقّت توان اکتیو DFIG در کنترل فرکانس سیستم قدرت 35

3-2-5- تغییر در تنظیم دروپ واحد‌های تولید بادی توسط DFIG بدون قابلیّت پشتیبانی فرکانس 36

3-2-6- تغییر در ثابت لختی سیستم بدون پشتیبانی فرکانس از طرف تولید بادی 36

3-2-7- تغییر در تنظیم فرکانس و ثابت لختی سیستم در حضور سیستم پشتیبانی فرکانس 36

3-2-8- کنترلر پیشنهادی برای پشتیبانی توان اکتیو از DFIG برای کنترل فرکانس 39

3-3- مشارکت واحد های تولید توان خورشیدی در کنترل فرکانس شبکه 40

3-3-1- مشخّصات پانل‌های خورشیدی و مدلسازی آنها 41

3-3-2- استراتژی کنترلی پیشنهادی برای مزرعه خورشیدی 44

3-3-3- تغییر در تنظیم دروپ واحد‌های تولیدی در حضور تولید خورشیدی با ضریب نفوذ 44

3-3-4- تغییر در ثابت لختی سیستم در حضور تولید خورشیدی 44

3-3-5- مشارکت واحد تولید خورشیدی در تنظیم فرکانس شبکه 45

3-3-6- الگوریتم سطح 2 کنترلی برای کنترل توان اکتیو 46

3-3-7- حالت کنترلی دروپ برای سیستم‌های خورشیدی 47

3-4- استفاده از ذخیره‌ساز‌های انرژی در سیستم قدرت 51

3-4-1- مدل ذخیره‌ساز باتری 51

3-5- الگوریتم بهینه‌سازی نوسان ذرات 53

3-6- شبکه ترکیبی 54

3-7- جمع بندی 55

فصل چهارم: شبیه سازی و ارائه نتایج 57

4-1- مقدمه 58

4-2- حضور DFIG در کنترل فرکانس سیستم قدرت 58

4-3- مشارکت سیستم‌های خورشیدی در کنترل فرکانس سیستم قدرت 67

4-4- مشارکت همزمان تولید بادی DFIG و سیستم‌های خورشیدی در کنترل فرکانس سیستم قدرت 71

4-5- استفاده از ذخیره‌ساز باتری در سیستم قدرت 75

4-6- بهینه‌سازی پاسخ دینامیکی شبکه 76

4-7- جمع بندی 81

فصل پنجم: نتیجه گیری و ارائه پیشنهادهای ممکن 82

5-1- بحث و نتیجه گیری 83

5-2- پیشنهادات 84

ضمائم 85

منابع و مراجع 86

 

 

لیست جداول

جدول 3- 1تغییر در تنظیم دروپ واحد های تولیدی و لختی سیستم برای ضریب نفوذ های متفاوت باد 38

جدول 4- 1سناریو‌های باتری در شبکه و مقدار شایستگی متناسب با ضریب نفوذ منابع و باتری 76

جدول 4- 2 مقادیر بهینه شده توسط الگوریتم PSO 78

جدول 1مشخصات نامی سیستم قدرت مورد مطالعه 85

جدول 2 پارامترهای به کار رفته در الگوریتم PSO 85

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

لیست تصاویر و نمودارها

شکل 2- 1 بلوک دیاگرام مدل توربین ژنراتور 11

شکل 2- 2 مدل ساده شده ی گاورنر 11

شکل 2- 3 مدل ساده شده ی توربین 11

شکل 2- 4 مدل توربین باز گرمکن 12

شکل 2- 5 مدل خطی و ساده شده کنترل فرکانس سیستم قدرت 12

شکل 2- 6 مدل کنترل بار فرکانس سیستم چند ماشینه 13

شکل 2- 7 شماتیک کلی سیستم دو ناحیه ای قدرت 13

شکل 2- 8 مدل خطی سیستم دو ناحیه ای قدرت با حلقه کنترلی تکمیلی 16

شکل 3- 1 بلوک دیاگرام مدل توربین بادی سرعت متغیّر 27

شکل 3- 2 منحنی‌های C_p برای زاویه‌های پره متفاوت 29

شکل 3- 3 توان و سرعت روتور توربین به عنوان تابعی از سرعت باد 29

شکل 3- 4 مدل توربین بادی سرعت متغیّر برای وزش باد با سرعت‌های کم و متوسط (کنترلر زاویه غیر فعّال شده است) 30

شکل 3- 5 توان مکانیکی تأمین شده از طرف DFIG برای سرعت‌های مختلف باد (B=0) 31

شکل 3- 6 مدت زمان تداوم افزایش توان پله ای موقت در خروجی توان الکتریکی توربین بادی برای سرعت‌های کم وزش باد 33

شکل 3- 7 مدت زمان تداوم افزایش توان پله ای موقت در خروجی توان الکتریکی توربین بادی برای سرعت‌های متوسّط وزش باد 34

شکل 3- 8 زاویه شیب پره برای برداشت سطوح مختلف توان اکتیو در سرعت‌های بالای وزش باد 35

شکل 3- 9 کنترلر پیشنهادی برای پشتیبانی فرکانس 40

شکل 3- 10 مدار معادل ماژول خورشیدی 41

شکل 3- 11 ژنراتور خورشیدی متصل به شبکه 42

شکل 3- 12 منحنی V_I ماژول خورشیدی 43

شکل 3- 13 منحنی V_P ماژول خورشیدی 43

شکل 3- 14 ساختار اصلی سیستم کنترلی 45

شکل 3- 15 دیاگرام کنترل دروپ فرکانس 49

شکل 3- 16 کنترل دروپ حالت ماندگار سیستم خورشیدی 50

شکل 3- 17 ساختمان کنترل دروپ پیشنهادی برای سیستم خورشیدی 51

شکل 3- 18 بلوک دیاگرام مدل خطی ذخیره‌ساز باتری 52

شکل 3- 19روند اجرایی تکنیک PSO 54

شکل 3- 20 بلوک دیاگرام سیستم دو ناحیه ای قدرت در حضور مزرعه بادی DFIG و مزرعه خورشیدی و ذخیره ساز باتری 54

شکل 4- 1تغییرات فرکانس ناحیه 1 در حضور سطوح مختلف تولید بادی در سیستم قدرت 59

شکل 4- 2 تغییرات فرکانس ناحیه 2 در حضور سطوح مختلف تولید بادی در سیستم قدرت 60

شکل 4- 3 تغییر توان ژنراتور ناحیه 1 60

شکل 4- 4 تغییر توان ژنراتور ناحیه 2 61

شکل 4- 5 تغییرات توان انتقالی خط ارتباطی بین ناحیه‌ای 61

شکل 4- 6 تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده 62

شکل 4- 7 تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده 63

شکل 4- 8 تغییرات توان انتقالی خطوط 63

شکل 4- 9 تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 65

شکل 4- 10 تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 65

شکل 4- 11 تغییرات فرکانس ناحیه 1 66

شکل 4- 12 تغییرات فرکانس ناحیه 2 66

شکل 4- 13 تغییرات توان انتقالی بین ناحیه 1 و 2 67

شکل 4- 14 تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده 69

شکل 4- 15تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده 69

شکل 4- 16تغییرات توان انتقالی خطوط برای موارد در نظر گرفته شده 70

شکل 4- 17تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 70

شکل 4- 18تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 71

شکل 4- 19تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده 72

شکل 4- 20 تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده 73

شکل 4- 21تغییرات توان انتقالی خط ارتباطی 73

شکل 4- 22تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 74

شکل 4- 23تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 74

شکل 4- 24 تغییرات توان خروجی منابع تجدیدپذیر با استفاده از برنامه‌های کنترلی پیشنهادی 75

شکل 4- 25 مقایسه انحراف فرکانس ناحیه 1 در حضور مقادیر بهینه باتری و ثات انتگرال گیر ناحیه 78

شکل 4- 26 مقایسه انحراف فرکانس ناحیه 2 در حضور مقادیر بهینه باتری و ثابت انتگرال گیر ناحیه 79

شکل 4- 27 مقایسه تغییرات توان انتقالی خط واسط در حضور مقادیر بهینه در دو ناحیه 79

شکل 4- 28 تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 80

شکل 4- 29 تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 80

 برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

پایـان نـامـه

مقطـع کارشناسـی ارشـد

رشته:مهندسی برق قدرت

عنـوان: کنترل فرکانس در سیستم قدرت در حضور نیروگاه خورشیدی و سیستم ذخیره انرژی با باتری

استـاد راهنمـا: جنـاب آقای دکترعبدالرضا شیخ الاسلامی

استـاد مشاور: رویا احمدی

تابستان 1392

تکه هایی از متن به عنوان نمونه :

چکیده:

خورشید یک منبع عظیم انرژی محسوب می شود و با توجه به کاهش هزینه های ساخت سلول های خورشیدی در طول زمان، استفاده از سیستم های فتوولتائیک جهت تولید برق به عنوان یکی از منابع تولید پراکنده مورد توجه بسیاری قرار گرفته است. مزیت نیروگاه های خورشیدی بر آن است که به یک بار هزینه راه اندازی و نصب نیاز داشته و انرژی رایگان، با هزینه اندک تعمیرات و نگه داری به شبکه تا مدت طولانی تحویل می دهد. مشکل عمده نیروگاه های توان بالای متصل به شبکه قدرت، وابستگی توان تولیدی شبکه به شرایط آب و هوایی می باشد که رفع این مشکل با کنترل فرکانس شبکه با روش های هوشمند و استفاده از تجهیزات با سرعت بالا و همچنین استفاده از نیروگاه ذخیره انرژی به صورت کاملا بهینه انجام پذیر می باشد .در اینجا سعی بر طراحی یک سیستم کنترلی هوشمند برای کنترل فرکانس یک شبکه الکتریکی قدرت، تشکیل یافته از تولید هیبرید خورشید، گاز و ذخیره ساز باتری، می باشد. این سیستم کنترلی هوشمند به صورت خودکار ضرایب کنترلی را برای نیروگاه گازی و باتری محاسبه می نماید. در این روش برای تعیین مقادیر ضرایب کنترل کننده فازی از روش الگوریتم پرندگان استفاده شده که موجب بهینه سازی هر چه بهتر معیار خطا برای به دست آوردن ضرایب کنترل کننده فازی شده است. مدل سیستم کنترل فازی در متلب دارای انعطاف در شبیه سازی محیط سیمولینک نمی باشد و در حین انجام سیولینک شبکه نمی تواند، مقادیر رنج های ورودی و خروجی فازی را تغییر دهد. در این پایان نامه تمام کد های فازی و توابع عضویت در محیط متلب نوشته شده است و با توابع دیگر به سیستم شبکه قدرت سیمولینک اتصال پیدا کرده و نتایج را در حافظه می تواند ذخیره داشته باشد. تمام اجزا نیروگاه خورشیدی به طور کامل شبیه سازی شده از مدل کردن یک سلول تا پنل خورشیدی و اتصال چندین هزار پنل به یکدیگر تست شده و مدار ردیاب حداکثر توان نیروگاه خورشیدی شبیه سازی شده و تعیین مقدار سلف و خازن آن با شبیه سازی تعیین گشته شده است و تعداد سوییچینگ مبدل بوست سیستم با الگوریتم ردیابی و مشاهده[1] استفاده شده است. به منظور بررسی، ابتدا شبکه قدرت به صورت بلوک کنترلی لاپلاس مدل شده و بار را تغییر می دهیم. همان طور که نتایج را مشاهده می کنیم در صورت استفاده کنترل فازی بهبود یافته با الگوریتم پرندگان زمان نشست نسبت به کنترلر معمول و نسبت به کنترلر انتگرالگیر ساده بهبود یافته است. پیک حداکثر خطای فرکانس در صورت استفاده کنترل فازی بهبود یافته با الگوریتم پرندگان نسبت به کنترلر معمول و نسبت به کنترلر انتگرالگیر ساده نیز بهبود یافته است. سپس اجزاء دینامیکی به طور کامل مدل شده در شبیه سازی، کارایی استراتژی پیشنهادی را مشاهده کرده و با روش های دیگر مقایسه می نماییم. نتایج حاصل از شبیه سازی بیانگر رفتار دقیق شبکه قدرت می باشد در نتیجه امکان ناپایداری در سیستم وجود داشته با این حال الگوریتم هوشمند جواب های مقدار کنترل قازی را محاسبه کرده و نتایج نشان دهنده کارایی بالای روش پیشنهادی می باشند.

 

 

 

فصل اول.. 1

مقدمه و کلیات تحقیق.. 1

1-1 مقدمه.. 2

1-1-1 مشخصات نیروگاه خورشیدی:.. 2

1-1-2 مزایای استفاده از نیروگاه خورشیدی:.. 3

1-1-2-1 مطالعات در ایران:.. 3

1-1-2-2 تولید برق بدون نیاز به انرژی های دیگر:.. 3

1-1-2-3 عدم احتیاج به آب زیاد :.. 3

1-1-2-4 عدم آلودگی محیط زیست.. 3

1-1-2-5 امکان تامین شبکه های کوچک و ناحیه ای:.. 4

1-1-2-6 استهلاک کم و عمر زیاد:.. 4

1-1-2-7 عدم احتیاج به متخصص.. 4

1-1-3 مشکلات نیروگاه خورشیدی متصل به شبکه:.. 4

1-1-4 کنترل فرکانس شبکه:.. 5

1-1-5 اهداف کنترل فرکانس شبکه قدرت:.. 5

1-1-6 شبیه سازی شبکه قدرت برای کنترل فرکانس شبکه متصل به نیروگاه خوشیدی:.. 6

1-1-7 لزوم استفاده نیروگاه ذخیره انرژی در شبکه:.. 7

1-1-8 روش کنترلی هوشمند استفاده شده و معیار اندازه گیری انحراف فرکانس:.. 7

1-1-9   مزیت روش پیشنهادی.. 7

1-1-10آنچه پیشرو داریم:.. 8

فصل دوم.. 9

ادبیات موضوع.. 9

مقدمه:.. 10

2-1 کنترل فرکانس از دیدگاه کنترلی.. 10

2-1-1 کنترل کننده PI. 10

2-1-2روش دو درجه ی آزادی در کنترل داخلی :. 11

2-2روش های کنترل هوشمند.. 12

2-2-1الگوریتم ژنتیک.. 12

2-2-2 الگوریتم جستجوی گرانشی.. 14

2-2-3 بهینه سازی گروهی پرندگان :. 15

2-2-4 شبکه عصبی مصنوعی :. 16

2-2-5کنترل منطق فازی.. 19

2-2-5-1خود سازماندهی کنترل فازی.. 24

2-2-5-2الگوریتم ژنتیک در مدل فازی برای کنترل بار فرکانس   24

2-3روش کنترل با منطق فازی:.. 27

2-4سیستم کنترل فرکانس:.. 31

2-5 مدل ذخیره انرژی :.. 32

2-6 مدل اینورتر برای تولید DC/AC.. 34

فصل سوم.. 35

روش تحقیق.. 35

3-1 مقدمه:.. 36

3-2مدل فازی:.. 36

3-2-1:قسمت های مختلف یک سیستم فازی.. 36

3-2-2مدل کنترلر ترکیب فازی با PI:.. 39

3-3 الگوریتم بهینه سازی گروه پرندگان:.. 40

3-4 کاربردی ازPSO در ریاضیات:.. 41

3-5 تشریح عملکرد پیدا کردن ضرایب کنترلر فازی و کنترلر PI و بهبود کارایی:.. 43

فصل چهارم.. 48

محاسبات و.. 48

یافته های تحقیق.. 48

4-1مقدمه.. 49

4-2-1 مدل شبیه سازی شده به صورت بلوک کنترلی با توابع لاپلاس:   49

4-2-2 مدل شبیه سازی شده کامل شبکه قدرت:.. 50

4-3 پنل خورشیدی:.. 51

4-4 مشخصه های پانل فتوولتائیک:.. 51

4-5 مدل و مشخصات سیستم فتوولتاییک:.. 52

4-6مدل ردیابی حداکثر توان.. 54

4-7 مدار داخلی مبدل بوست شبیه سازی شده در متلب :.. 58

4-8 الگوریتمMPPT:.. 59

4-8-1روش کنترل P&O:.. 59

4-8-2 روش هدایت افزایشی:.. 59

4-8-3دنبال کننده حداکثر توان(MPPT):.. 60

4-8-4 الگوریتمMPPT شبیه سازی شده در متلب :.. 61

4-9 مدل اینورتر:.. 62

4-10 مدل اینورتر شبیه سازی شده در متلب :.. 63

4-11 مدل واحد:.. 65

4-12مدل کردن نیروگاه گازی:.. 65

4-13 مدل بار:.. 66

4-14 مدل موتور محرک:.. 66

4-15مدل گاورنر:.. 66

4-16مدل خط ارتباطی:.. 68

4-17مدل ذخیره ساز انرژی :.. 68

4-18 مقایسه PI-FUZZYدر مدل بلوکی بدون باتری:.. 69

4-19 مقایسه کنترلرها در حضور تمام تجهیزات در مدل بلوکی:   70

حال مدل فازی را در شرایط گوناگون بررسی می کنیم :.. 71

4-20-1بدون حضور خورشید و باتری:.. 71

4-20-2 با حضور باتری :.. 72

4-20-3   نتایج با حضور نیروگاه خورشید و باتری :.. 75

فصل پنجم.. 80

نتیجه گیری و پیشنهادات.. 80

5-1 نتیجه گیری :.. 81

5-2 پیشنهادات:.. 82

 

 

 

 

فهرست اشکال، نمودارها و جداول

 

شکل 2-1 ساختارTDF-IMC………………………………………………………………………………………………..12

شکل 2-2 مدل کردن برای الگوریتم ژنتیک…………………………………………………………………………………14

شکل 2-3 کنترلر سیستم قدرت تک منطقه ای…………………………………………………………………………… 15

شکل 2-4 عملکرد بهینه سازی pso…………………………………………………………………………………………16

شکل 2-5 یک لایه شبکه عصبی……………………………………………………………………………………………….18

شکل2-6 نمای پایه یک شبکه فازی…………………………………………………………………………………………..19

شکل 2-7 سیستم تولید قدرت منطق فازی پایه مرکزی……………………………………………………………….21

شکل2-8 توابع عضویت کنترل فازی…………………………………………………………………………………………22

شکل2-9 مدل فازی برای مرجع………………………………………………………………………………………………23

شکل2-10معماری کنترل فازی خود سازماندهی شده ……………………………………………………………….24

شکل 2-11 مسیر برای آموزش در طرح الگوریتم ژنتیک………………………………………………………………25

شکل 2-12 نمودار کلی یک سیستم قدرت دو منطقه……………………………………………………………………27

شکل2- 13ساختار پایه ای از یک سیستم کنترل فازی………………………………………………………………….28

شکل2-14 توابع فازی برای کارکرد مدل MPPT……………………………………………………………………..28

شکل 2-15 اتصال دو سیستم دارای MPPT مجزا به یکدیگر……………………………………………………30

شکل2-16 شماتیک ساختار سیستم قدرت………………………………………………………………………………..31

شکل 2-17 مدل یک BES در شبکه قدرت…………………………………………………………………………….32

شکل 2-18 اجزاء مدل یک BES به صورت بلوک دیاگرامی………………………………………………………33

شکل 2-19 مدار بایاس از اینورتر منبع ولتاژی……………………………………………………………………………34

شکل 2-20 سوییچ زنی PWM برای یک فاز برای جریان………………………………………………………….34

شکل3-1 توابع عضویت سیستم فازی نمونه………………………………………………………………………………37

شکل 3-2 مدل PI-FUZZY………………………………………………………………………………………………..39

شکل 3-3 مقادیر تصادفی برای ردیابی تابع هدف در الگوریتمPSO……………………………………………41

شکل 3-4 عملکرد بهینه سازی pso ………………………………………………………………………………………42

شکل 3-5 توابع عضویت فازی برای یک متغییر ورودی……………………………………………………………….43

شکل 3-6 نمودار فرکانس با نواحی تشخیص برای کنترل کننده فازی…………………………………………..44

شکل 3-7 مقدار دهی به ضرایب فازی ساز………………………………………………………………………………..45

شکل 3-8 الگوریتم پیشنهادی برای محاسبه ضرایب……………………………………………………………………47

شکل 4-1 سیستم بلوکی مدل لاپلاس ……………………………………………………………………………………….50

شکل4-2 مدل شبیه سازی کامل شبکه………………………………………………………………………………………50

شکل 4-3 مدل مداری سلول خورشیدی…………………………………………………………………………………..51

شکل 4-4 شبیه سازی نیروگاه خورشیدی با مدار بوست و کنترلر مبدل dc/ac با اینورتر و سلف

خطوط در متلب……………………………………………………………………………………………………………………..53

شکل 4-5 شبیه سازی سلول خورشیدی و ماژول خورشیدی در متلب…………………………………………..53

شکل 4-6   مشخصات ولتاژ- جریان(a) و ولتاژ- توان(b) یک ماژول خورشیدی………………………….54

شکل 4-7 ماژول PV به طور مستقیم به یک بار مقاومتی(متغییر) متصل است……………………………….55

شکل 4-8 منحنی IV BP SX 150S ماژول PV و بارهای مختلف مقاومتی شبیه سازی با مدل

متلب………………………………………………………………………………………………………………………………….. 55

شکل 4-9 مبدل بوست…………………………………………………………………………………………………………. 56

شکل 4-10 جریان سلف در دو زمان قطع و وصل سوییچ……………………………………………………………57

شکل 4-11 مدار مبدل بوست و سلف و ورودی سوییچینگ MPPT شبیه سازی شده در متلب……..57

شکل 4-12 مدار داخلی مبدل بوست………………………………………………………………………………………..58

شکل 4-13 ورودی و خروجی ولتاژ مبدل بوست با مقدار 50% دستور MPPT………………………….. 58

شکل 4-14 فلوچارت روش…………………………………………………………………………………………………. 59

شکل 4-15 دسته بندی مکان های نمودار توان – ولتاژ برای ردیابی نقطه MPP………………………….. 59

شکل 4-16 مشخصه توان ولتاژ MPPT………………………………………………………………………………… 61

شکل 4-17 اجزاء ورودی و خروجی برای Mfile نوشته شده در MPPT ………………………………….62

شکل 4-18 نحوه بدست آوردن مقدار جریان مرجع در نقاط توان ماکزیمم در تابش های مختلف….. 63

شکل 4-19 مدل شبیه سازی اجزاء کامل اینورتر با وجود سلف و ترانس برای اتصال به شبکه……….. 61

شکل 4-20 مدار داخلی سیستم کنترلی اینورتر dc/ac ……………………………………………………………..61

شکل 4-21 مدل داخلی تبدیل سه بردار abc به مختصات dq…………………………………………………… 65

شکل 4-22 مدل داخلی سیستم نیروگاه گازی با مدل کنترلی………………………………………………………..65

شکل 4-23 مدل ساده از سیستم کنترلی همراه با گاورنر……………………………………………………………. 67

شکل4-24: بلوک دیاگرام گاورنر، ژنراتور، بار و توربین و کنترلر…………………………………………………..68

شکل 4-25 مقایسه نتایج PI-FUZZY در مدل بلوکی……………………………………………………………….69

شکل 4-26 نتایج فرکانس از شبکه…………………………………………………………………………………………….70

شکل4-27 توان الکتریکی خط از نیروگاه گاز…………………………………………………………………………… 71

شکل 4-28 فرکانس سیستم در حالت تامین بارفقط از نیروگاه گازی در شبکه سیمولینک کامل……….71

شکل 4-29 توان انتقالی نیروگاه ذخیره، باتری در حالت ورود بار در شبکه سیمولینک کامل……………..72

شکل 4-30 فرکانس سیستم در حالت ورود بار در شبکه سیمولینک کامل با وجود باتری………………73

شکل4-31 مقایسه نتایج فرکانس سیستم در دو حالت وجود و عدم نیروگاه ذخیره …………………………73

شکل4-32 مقدار توان نیروگاه خورشیدی…………………………………………………………………………………..74

شکل 4-33 فرکانس سیستم در شبکه کامل با حضور نیروگاه خورشیدی و عدم سیستم ذخیره انرژی

باتری…………………………………………………………………………………………………………………………………..75

شکل 4-34 فرکانس سیستم در شبکه کامل با حضور نیروگاه خورشیدی و سیستم ذخیره انرژی باتری……………………………………………………………………………………………………………………………………..76

شکل 4-35 مقایسه فرکانس شبکه در دو حالت با وجود نیروگاه خورشیدی با تابش متغییر در صورت

وجود و عدم نیروگاه ذخیره انرژی……………………………………………………………………………………………77

جدول(2-1)قوانین فازی برای بلوک اول…………………………………………………………………………………..21

جدول(3-1):تقسیم بندی ورودی شرایط در بازه های کلی………………………………………………………….38

جدول(3-2):قوانین ورودی و خروجی………………………………………………………………………………………39

 

 

جدول(4-1) مشاهدات نتایج شبیه سازی در متلب با توجه به شکل4-25………………………………………69

جدول(4-2) مشاهدات نتایج شبیه سازی کامل شبکه در متلب با توجه به شکل4-26………………………7

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

پایـان نـامـه

مقطـع کارشناسـی ارشـد

رشته:مهندسی برق قدرت

 

عنـوان: کنترل فرکانس در سیستم قدرت مدرن در حضور مزارع بادی و باطری

استـاد راهنمـا: جنـاب آقای دکترعبدالرضا شیخ الاسلامی

استـاد مشاور: رویا احمدی

 

 

تابستان 1392

تکه هایی از متن به عنوان نمونه :

فهرست مطالب:……………………………………………………………………………………………..صفحه

فصل 1 :چکیده

1-1:چکیده……………………………………………………………………………………………………………………….2

فصل 2:مفاهیم کلی باد و کنترل فرکانس

2-1:مقدمه باد …………………………………………………………………………………………………………………. 4

2-2 : تاثیرات باد در شبکه ………………………………………………………………………………………………… 6

2-3 : جنبه های حضور باد در سیستم تولید ………………………………………………………………………… 8

2-4 : جنبه های اتصال به شبکه …………………………………………………………………………………………. 9

2-5 : قدرت ……………………………………………………………………………………………………………………. 9

2-6:حد بتز …………………………………………………………………………………………………………………….10

2-7:توربین های بادی از نظر نوع ارتباط با شبکه سراسری…………………………………………………… 10

2-7-1:توربین های بادی جدا از شبکه ……………………………………………………………………………… 10

2-7-2:توربین های بادی متصل به شبکه ………………………………………………………………………. ….11

2-8 : انواع توربین های بادی از لحاظ محور چرخش توربین ………………………………………………. 11

2-8-1 : توربین بادی با محور افقی ………………………………………………………………………………….. 11

2-8-2 : نوع محور عمودی …………………………………………………………………………………………….. 11

2-9 : اجزای اصلی توربین باد…………………………………………………………………………………………… 12

2-9-1 : روتور ……………………………………………………………………………………………………………… 13

2-10 : ژنراتور و انواع مورد استفاده در مزارع بادی ……………………………………………………………. 14

2-10-1:ژنراتور القایی روتور قفسه ای……………………………………………………………………………… 14

2-10-2:ژنراتور القایی روتور سیم پیچی شده با کنترل مقاومت روتور………………………………….. 15

2-10-3:ژنراتور القایی دو تغذیه ای………………………………………………………………………………….. 16

2-10-4:ژنراتور سنکرون ………………………………………………………………………………………………… 17

2-11:انواع توربین های بادی از نظر سرعت ……………………………………………………………………… 18

2-11-1:توربین های سرعت ثابت …………………………………………………………………………………… 18

2-11-2:توربین های سرعت متغییر ………………………………………………………………………………….. 19

2-12:مفاهیم کنترل توان …………………………………………………………………………………………………. 20

2-13:انواع اتصالات الکتریکی …………………………………………………………………………………………. 21

2-14 : پایداری سیستم قدرت………………………………………………………………………………………….. 23

2-15 : انواع پایداری …………………………………………………………………………………………………….. 23

2-16 : فرکانس سیستم ……………………………………………………………………………………………………25

2-17: پاسخ ژنراتور به تغییر بار ………………………………………………………………………………………. 26

2-18 : انواع گاورنر ……………………………………………………………………………………………………….. 26

2-19 مشخصه واقعی دروپ ………………………………………………………………………………………….. 28

2-20: کنترل خودکار تولید AGC……………………………………………………………………………………… 28

2-21: کنترل بار فرکانس ………………………………………………………………………………………………… 30

2-22: کنترل فرکانس سیستم بادی……………………………………………………………………………………..31

2-23 : کنترل اینرسی ………………………………………………………………………………………………………33

2-24 : شبیه سازی ذخیره سریع قدرت ……………………………………………………………………………..34

2-25 : کنترل دروپ ……………………………………………………………………………………………………….35

2-26 : کنترل پیچ …………………………………………………………………………………………………………… 36

2-27 : کنترل سطح مزرعه بادی ………………………………………………………………………………………. 37

2-28:استراتژی کنترل ذخیره ساز در کنترل کلاسیک AGC…………………………………………………….38

2-29 کنترل ذخایر انرژی مبتنی بر الگوریتم PSO ……………………………………………………………….39

فصل 3 ساختار کنترلی

3-1:مقدمه……………………………………………………………………………………………………………………… 42

3-2:کنترلر عصبی……………………………………………………………………………………………………………. 43

3-2-1:روش انتشار بازگشتی…………………………………………………………………………………………….43

3-2-2:آموزش ………………………………………………………………………………………………………………. 44

3-3بهینه سازی ضرایب شبکه عصبی………………………………………………………………………………… 46

3-4:روش بهینه سازی جستجوگر باکتری …………………………………………………………………………..47

3-5:ترکیب عصبی و الگوریتم باکتری……………………………………………………………………………….. 49

3-6 اینورتر باتری…………………………………………………………………………………………………………… 50

3-7:سیستم گاورنر …………………………………………………………………………………………………………. 52

فصل چهارم :ساختار شبکه

4-1:شرح سیستم…………………………………………………………………………………………………………….. 55

4-2:مدل دینامیکی بلوکی…………………………………………………………………………………………………. 55

4-2-1:مدل توربین باد………………………………………………………………………………………………………55

4-2-2:مدل باد……………………………………………………………………………………………………………….. 56

4-2-3:سیستم ذخیره انرژی……………………………………………………………………………………………… 56

4-2-4:گاورنر ژنراتور……………………………………………………………………………………………………… 56

4-2-5:مدل سیستم و انحراف فرکانس …………………………………………………………………………….. 56

4-2-6:سیستم کنترل……………………………………………………………………………………………………….. 57

4-2-7:معیارهای خطا …………………………………………………………………………………………………….. 57

4-3:مدل سیمولینک………………………………………………………………………………………………………… 57

4-3-1مزرعه باد…………………………………………………………………………………………………………….. 58

4-3-2:ذخیره سازانرژی ………………………………………………………………………………………………….. 62

4-3-3سیستم بخار………………………………………………………………………………………………………….. 63

فصل پنجم روش پیشنهادی و بررسی نتایج

5-1 شرح روش پیشنهادی…………………………………………………………………………………………………66

5-2 انجام شبیه سازی و بررسی نتایج …………………………………………………………………. ………….. 68

5-3 مقایسه روش پیشنهادی در سیستم بلوکی بدون حضور باتری………………………………………… 68

  • بررسی کارایی کنترلر در سیستم بلوکی ………………………………………………………………….. 68

5-5 بررسی سیستم سیمولینک کامل………………………………………………………………………………….. 70

5-6بررسی پاسخ فرکانسی روش پیشنهادی و توان تحویلی اجزاءبدون حضور باتری…………………70

5-7 بررسی پاسخ فرکانسی روش پیشنهادی و توان تحویلی اجزاءبدون حضور باتری……………….71

5-8 نتیجه گیری…………………………………………………………………………………………………………….74

5-9پیشنهادات……………………………………………………………………………………………………………….75

 

فهرست اشکال، نمودارها و جداول

شکل(2-1)نمودار سالیانه باد در جهان………………………………………………………………………………..6

شکل(2-3):میزان رشد استفاده از باد در مقایسه با سایر انرژی ها در آمریکا…………………………….6

شکل(2-2)تاثیرات تغییر سرعت باد در توان خروجی مزرعه……………………………………………………7

شکل(2-4):میزان تاثیرارتفاع در باد……………………………………………………………………………………10

شکل(2-5): انواع توربین محور افقی…………………………………………………………………………………..12

شکل(2-6):توربین عمودی داریوس…………………………………………………………………………………….13

شکل(2-7):اجزا اصلی توربین بادی محور افقی…………………………………………………………………….13

شکل(2-8):توربین بر مبنای ماشین روتور قفسه ای………………………………………………………………14

شکل(2-9):ژنراتور القایی روتور سیم پیچی شده………………………………………………………………..15

شکل(2-10):ژنراتور القایی دو تغذیه ای………………………………………………………………………….16

شکل(2-11):یک توربین سرعت ثابت با ژنراتور قفس سنجابی………………………………………………18

شکل(2-12):توربین با ژنراتور دو تغذیه ای………………………………………………………………………….19

شکل(2-13):سیستم با مبدل تمام قدرت………………………………………………………………………………20

شکل(2-14)اتصال ac…………………………………………………………………………………………………21

شکل(2-15):اتصال hvdc……………………….. ………………………………………………………………….22

شکل(2-16):اتصال vschvdc……………………………………………………………………………………..22

شکل(2-17):تقسیم بندی انواع پایداری……………………………………………………………………………….24

شکل(2-18):تقسیم بندی زمانی برنامه ریزی و بهره برداری سیستم قدرت……….………………………24

شکل(2-19):تابع انتقال رابطه قدرت وسرعت………………………………………………………………………26

شکل(2-20): تابع انتقال رابطه توان با فرکانس……………………………………………………………………..26

شکل(2-21):گاورنر سعت ثابت………………………………………………………………………………………….27

شکل(2-22)گاورنر با فیدبک حالت دایم………………………………………………………………………….27

شکل(2-23):منحنی حالت دایم از یک گاورنر با مشخصه دروپ………………………………………….28

شکل(2-24)منحنی دروپ خطی ایده آل…………………………………………………………………………28

شکل(2-25):کنترل خودکار تولید با کنترل اضافی انتگرال………………………………………………………29

شکل(2-26):یک ناحیه مجهز به کنترل بار فرکانس ……………………………….……………………………..30

شکل(2-27):شبیه سازی اینرسی پنهان برای توربین سرعت متغییر…………………………………………..34

شکل(2-28):منحنی فرکانس دروپ…………………………………………………………………………………….35

شکل(2-29)کنترل دروپ برای توربین سرعت متغییر…………………………………………………………35

شکل(2-30):کنترل پیچ سنتی………………………………………………………………………………………..36

شکل(2-31)کنترل پیچ اصلاح شده………………………………………………………………………………..36

شکل(2-32):ساسله مراتب کنترل در سطح مزرعه باد…………………………………………………………….37

شکل(2-33):کنترل دیاگرام سیستم باتری …………………………………….………..…………………………….39

شکل(2-34):بلوک دیاگرام مربوط به کنترل agc با باد و باتری………………………………………………39

شکل(2-35):بلوک دیا گرام سیستم هیبرید……………………………………………………………………………40

شکل(3-1): ساختار دو لایه شبکه عصبی…………………………………………………………………………….44

شکل(3-2)شبکه تحت آموزس در متلب………………………………………………………………………………46

شکل(3-3)سیستم کنترلی مدل شده ساده……………………………………………………………………………..47

شکل(3-4)مقایسه کنترلر عصبی و pi معمولی………………………………………………………………………47

شکل(3-5): چکونگی عملکرد الگوریتم باکتری و شبکه عصبی………………………………………………48

شکل(3-6)فلوچارت چگونگی عملکرد باکتری…………………………………………………………………….49

شکل(3-7)شکل موج سوئیچ زنی……………………………………………………………………………………….50

شکل(3-8)شماتیک سیستم تولید سیگنال کنترل برای اینورتر………………………………………………….51

شکل(3-9): کنترل هیسترزیس جریان………………………………………………………………………………….51

شکل(3-10)نحوه عملکرد سیستم کنترل باتری……………………………………………………………………..51

شکل(3-11)نمودار بلوکی برای کنتل اولیه سیستم بخار………………………………………………………….53

شکل(3-12)نمودار بلوکی مربوط به گاورنر………………………………………………………………………….53

شکل(3-13)مدل کنترل در متلب…………………………………………………………………………………………53

شکل(4-1):مدل بلوکی شبکه مورد بررسی…………………………………………………………………………..55

شکل(4-2):مدل کلی سیمولینکی…………………………………………………………………………………….58

شکل(4-3):ساختار ژنراتور القایی دو تغذیه ای ………………………………………………………………59

شکل(4-4): شکل منحنی cp-χ………………………………………………………………………………59

شکل(4-5):کنترل زاویه گام………………………………………………………………………………………………..60

شکل(4-6):توان های خروجی مزرعه باد……………………………………………………………………………..61

شکل(4-7):اتصال برای باتری……………………………………….. ………………………………………………..62

شکل(4-8) تبدیل abcبهdq……………………………………………………………………………………………..63

شکل(4-9) روش هماهنگی مرجع SRF……………………………………………………………………………64

شکل(4-10):بلوک دیاگرام سیستم مکانیکی ژنراتور سنکرون………………………………………………64

شکل(4-11):مدل کلی گاورنر……………………………………………………………………………………….64

جدول(4-1):جدول مقایسه باتری ها……………………………………………………………………………………61

نمودار (4-1)نمودار مقایسه باتری ها ………………………………………………………………………………….63

شکل(5-1):فلوچارت روش انجام کار………………………………………………………………………………..67

شکل(5-2):مقایسه پاسخ فرکانسی روش پیشنهادی و piمعمولی…………………………………………..68

شکل(5-3):مقایسه پاسخ فرکانسی و روش پیشنهادی در بلوکی کامل……………………………………69

شکل(5-4): مقایسه پاسخ فرکانسی روش پیشنهادی در حالت کامل و عدم حضور باتری…………..69

شکل(5-5):توان تحویلی نیروگاه بخار…………………………………………………………………………………70

شکل(5-6):توان تحویلی نیروگاه باد……………………………………………………………………………………71

شکل(5-7):تغییرات فرکانس در عدم حضور باتری………………………………………………………………71

شکل(5-8):توان تحویلی نیروگاه بخار در حضور باتری…………………………………………. ……..72

شکل(5-9):توان تحویلی باتری…………………………………………………………………………………….72

شکل(5-10): تغییرات فرکانس در حضور باتری…………………………………………………………………..73

شکل(5-11):مقایسه تغییرات فرکانس در دو حالت با باتری و بدون باتری……………………………….73

شکل 5-12 توان تحویلی مزرعه باد…………………………………………………………………………………….74

شکل 5-13توان تولیدی برای توربین بخار در حالت حضور و عدم حضور باتری……………………..74

شکل (5-14)توان تحویلی باتری در طول تغییرات توان تولیدی باد ………………………………………..74

شکل 15-5مقایسه دو حالت باد متغییر با باتری و بدون باتری………………………………………………..75

 

 

 

فصل اول

چکیده

 

 

 

 

 

 

 

 

 

 

 

 

 

چکیده:

با توجه به اهمیت فرکانس در پایداری و عملکرد صحیح اجزائ سیستم قدرت و همچنین توسعه روز افزون استفاده از انرژی های تجدید پذیر خصوصا بادبه عنوان منابع ارزان ودر دسترس وبدون آلودگی ،استفاده از نیروگاههای بادی در سیستم قدرت به دلیل مسائل فنی تاثیر معکوسی برپایداری فرکانس شبکه خواهد داشت.در سیستم های سنتی ژنراتور های سنکرون به صورت اتوماتیک می توانستند کنترل فرکانس شبکه را بر عهده گیرند. اما نیروگاههای بادی به علت محدودیت های فنی در تنظیم فرکانس در نظر گرفته نمی شوند . با توجه به این دلایل وبه منظور اینکه استفاده از این انرژی بهینه واقتصادی و با اعتماد بالا باشد و جهت بررسی و پیدا کردن راهکار مناسب به منظور شرکت این واحدهای تولیدی که استفاده از آنها با سرعت بالایی در حال گسترش است در کنترل فرکانس سیستم قدرت که فاکتور مهمی در ارزیابی و عملکرد صحیح یک سیستم می باشد خود اهمیت وضرورت انجام بررسی در این زمینه را مشخص می نماید.بنابراین نیاز به یک طرح کنترلی جهت مشارکت این نیروگاهها در کنترل اولیه وثانویه فرکانس سیستم وجود دارد.

به دلیل عدم قطعیت باد نوساناتی در توان خروجی ایجاد می شود واین نوسانات قدرت نوسانات فرکانس را در سطح اولیه ایجاد می کنند به منظور کاهش تاثیر این نوسانات امروزه استفاده از توربین های سرعت متغییر دو تغذیه ای به دلیل فعالیت در بازه بزرگتری از باد و کاهش نوسانات تولید باد به صورت گسترده افزایش یافته است اما از سوی دیگر اینکه توربین های بادی دوتغذیه ای به دلیل ساختار خود مستقل از فرکانس سیستم عمل می نمایند و در نزدیک مقدار نامی خود فعالیت میکنند بنابراین به تغییرات فرکانس عکس العمل نشان نمی دهند هم چنین نمی توانند به صورت رزرو در کنترل فرکانس سیستم شرکت نمایند وهمیشه نیاز به قدرت رزرو از نوع سنتی دارند.در سیستم های سنتی ژنراتور ای سنکرون به صورت اتوماتیک می توانستند سرعت ژنراتورها را برای تامین کنترل فرکانس تنظیم نمایند.و به صورت لحظه ای توان خروجی را افزایش می دهند که تا حدی نیاز شبکه را بر طرف نموده و مانع از افت شدید و ناگهانی فرکانس می شود .همانطور که در مورد ژنراتور دو تغذیه ای عنوان شد به دلیل حضور تجهیزات الکترونیک قدرت سرعت چرخش آن از فرکانس شبکه جداست و تغییرات فرکانس شبکه توسط روتور دیده نمی شود ،و در نتیجه اینرسی سیستم قدرت با افزایش تولید باد کاهش می یابد . که برای حل این مساله باید تولیدات بادی را در کنترل فرکانس سیستم شرکت داد.همچنین با توجه به گستردگی سیستم های قدرت و رو به رشد بودن آنها که این وسعت وپیچیدگی بالای شبکه های قدرت سبب غیر خطی شدن معادلات حاکم بر سیستم میگردد .کنترل های سنتی و مرسوم که به صورت خطی عمل می نمایند و از قابلیت بروزرسانی پایینی برخوردار هستند و تا حدودی کند می باشند از کارایی پایینی برخوردار هستند. بنابراین امروزه به سمت طراحی یک کنترلرهای هوشمند با بهره گیری از الگوریتم های هوشمند میرویم.

در این پایان نامه یک روش کنترلی مبتنی بر شبکه عصبی با توجه به ویژگی هاو محاسن این روش به منظور شرکت در کنترل فرکانس برای یک سیستم هیبرید باد ، بخارو ذخیرره ساز باتری که ضرایب کنترلراز طریق الگوریتم باکتری های جستجو گر بهبود داده شده است پیشنهاد شده است ،همچنین بمنظور بهتر شدن وضعیت فرکانس و پاسخ سیستم به اغتشاشات توان و افزایش اینرسی سیستم از ذخیره ساز انرژی باتری جهت شرکت تولید باد در فرآیند کنترل فرکانس استفاده شده است.برای بررسی کارایی روش کنترلی پیشنهادی ابتدا سیستم مذکور به صورت دینامیکی در محیط متلب شبیه سازی شده است و نتایج شبیه سازی ها با یک کنترلر معمول مقایسه شده است که نتایج نشان دهنده رفتار مناسب و مقاوم بودن روش پیشنهادی در مقابل تغییرات بار و باد و همچنین بهبود پاسخ فرکانسی سیستم در این حالت می باشد.

قسمت های مختلف این پایان نامه به شرح زیر می باشد:در بخش 2ادبیات موضوع و کارهای گذشته مطرح شده است ،در بخش 3 ساختار سیستم کنترل پیشنهادی و اجزاء آن ، در بخش 4 اجزاء مختلف به کار رفته در سیستم مورد مطالعه شرح داده شده است ،در بخش 5 الگوریتم حل روش پیشنهادی و نتایج شبیه سازی ها و پیشنهادات بیان شده است.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

پایان‌نامه کارشناسی ارشد

در رشته مهندسی برق گرایش قدرت

 

کنترل هماهنگ مزرعه بادی بزرگ و STATCOM به وسیله­ی کنترل کننده پیشبین برای بهبود قابلیت LVRT

 

 

 

استاد راهنما:

دکتر محسن گیتی زاده

 

شهریورماه 1392

 

 

تکه هایی از متن به عنوان نمونه :

چکیده

کنترل هماهنگ مزرعه بادی بزرگ و STATCOM به وسیله­ی کنترل کننده پیشبین برای بهبود قابلیت LVRT

نگارش:

سیاوش بهشت‌آیین

 

در این پایان‌نامه از STATCOM برای بهبود قابلیت عبور از ولتاژ کم (LVRT) توربین بادی استفاده‌شده است. برای کنترل STATCOM از سه قسمت مجزا و پیوسته استفاده‌شده است.

قسمت اول وظیفه تشخیص و شناسایی اندازه و زاویه ولتاژ را بر عهده دارد. با توجه به اینکه در طول مدت خطا ولتاژ علاوه بر توالی مثبت توالی منفی نیز پیدا می‌کند، بنابراین در این شرایط از روشی موسوم به قاب مرجع دوتایی مجزای سنکرون بهینه‌شده ( (ODDSRF استفاده‌شده است، که این روش بر مبنای DDSRF است اما پارامترهای فیلتر پایین­گذر آن به وسیله‌ی الگوریتم بهینه‌سازی تجمع ذرات فازی تطبیقی (AFPSO) بهینه‌شده­ است.

قسمت دوم کنترل منطق فازی (FLC) با توجه به اندازه ولتاژ، توان راکتیو مرجع مورد نیاز کنترل پیش بین توان مستقیم (P-DPC) فراهم می‌شود. همچنین مقدار دقیق توان راکتیو مرجع به وسیله بهینه‌سازی پارامترهای توابع عضویت FLC به وسیله‌ی روش AFPSOبدست آمده است.

قسمت سوم کلید زنی جبران ساز استاتیک سنکرون (STATCOM)بر اساس روش P-DPC صورت می پذیرد. . این کنترل­کننده با توجه به زاویه ولتاژ ، مقدار توان‌های راکتیو و اکتیو اعمالی و مقدار توان‌های راکتیو و اکتیو مرجع، سه بردار ولتاژ به همراه زمان اعمال آن‌ها را تعیین می‌کند.

نتایج شبیه‌سازی کنترل STATCOM به وسیله‌ی ساختار فوق نشان می‌دهد که علاوه بر بهبود ولتاژ در زمان خطا در لحظه­ی راه‌اندازی توربین بادی نیز زمان نشست کم می‌شود. همچنین با توجه به کد شبکه­ی Nordic بهبود ولتاژ به وسیله STATCOM مانع از انفصال توربین بادی از شبکه می‌شود.

 

واژه‌های کلیدی:کنترل‌کننده پیش بین توان مستقیم، کنترل فازی، حلقه بسته فاز ، قابلیت عبور از ولتاژ کم،STATCOM ، بهینه سازی

 

فهرست مطالب

  1. فصل اول: مقدمه 1

1-1- ضرورت احتیاج به تحقیق 2

1-2- هدف تحقیق و اهمیت آن 3

1-3- بخش‌های پایان‌نامه 3

  1. فصل دوم: مروری بر تحقیقات انجام‌شده 5

2-1- مقدمه 6

2-2- مروری بر ادبیات موضوع 6

  1. فصل سوم: توربین بادی و کدهای شبکه 9

3-1- مقدمه 10

3-2- توربین بادی 10

3-2-1- توربین‌های بادی سرعت ثابت 12

3-2-2- توربین بادی سرعت متغیر محدودشده 13

3-2-3- توربین سرعت متغیر با ژنراتور القایی دو سویه 14

3-2-4- توربین بادی سرعت متغیر با مبدل تمام سطح 14

3-3- جریان خطای توربین بادی 15

3-3-1- جریان اتصال کوتاه در توربین بادی سرعت ثابت 15

3-3-2- جریان اتصال کوتاه در توربین بادی سرعت متغیر محدودشده 16

3-3-3- جریان اتصال کوتاه در توربین سرعت متغیر با ژنراتور القایی دو سو تغذیه 16

3-3-4- جریان اتصال کوتاه در توربین بادی سرعت متغیر با مبدل تمام سطح 17

3-4- کد شبکه 18

3-4-1- معیار توان اکتیو و راکتیو 19

3-4-2- معیار فرکانس 21

3-4-3- معیار ولتاژ 22

3-5- راه‌حل‌های عبور از ولتاژ کم 24

  1. فصل چهارم: کنترل پیش بین توان مستقیم STATCOM 26

4-1- مقدمه 27

4-2- حلقه بسته فاز 28

4-2-1- روش قاب مرجع سنکرون تحت شرایط عدم تعادل 29

4-2-2- بررسی روش قاب مرجع در شرایط عدم تعادل 30

4-2-3- قاب مرجع دوتایی مجزا سنکرون 33

4-2-4- روش قاب مرجع دوتایی سنکرون بهینه شده 38

4-3- منطق فازی 42

4-3-1- مفاهیم و اصطلاحات 42

4-3-2- توابع عضویت 43

4-3-3- متغیر زبانی 45

4-3-4- سیستم استنتاجی 46

4-3-5- غیر فازی ساز 47

4-3-6- تنظیم کردن پارامترهای کنترل فازی 49

4-4- بهینه‌سازی فازی تطبیقی گروه تجمع ذرات 50

4-4-1- مقدمه 50

4-4-2- الگوریتم بهینه‌سازی گروه ذرات 50

4-4-3- الگوریتم بهینه‌سازی فازی تطبیقی تجمع ذرات 52

4-5- معرفی STATCOM 55

4-5-1- مشخصه ولتاژ-جریان 56

4-5-2- مدل حالت دائم STATCOM 57

4-6- منابع ذخیره انرژی 60

4-6-1- باتری 61

4-6-2- چرخ طیار 61

4-6-3- ابررسانا 62

4-7- کنترل پیش بین 62

4-7-2- کنترل پیش بین در مبدل قدرت و درایو 64

4-7-3- چرا کنترل پیش بین برای الکترونیک قدرت مناسب است؟ 66

4-7-4- کنترل پیش بین برای مبدل سه فاز 68

4-7-5- رفتار دینامیکی مبدل DC-ACبه شبکه 69

4-7-6- کنترل پیش بین مبدل DC-AC بر اساس روش 3+3 74

  1. فصل پنجم: نتایج شبیه‌سازی 78

5-1- مقدمه 79

5-2- شبکه مورد مطالعه 79

5-3- شناسایی اندازه و زاویه ولتاژ در شرایط خطا به وسیله‌ی ODDSRF-PLL 80

5-4- ایجاد مرجع توان راکتیو توسط کنترل فازی 81

5-5- بهبود ولتاژ باس توربین بادی توسط P-DPC نوع 3+3 84

  1. فصل ششم: جمع‌بندی و پیشنهادها 88

6-1- مقدمه 89

6-2- راهکارهای پیشنهادی ادامه‌ی کار بهتر 89

  1. مراجع 91

 

 

فهرست شکل‌ها

شکل 3-1 شماتیک توربین بادی سرعت ثابت 12

شکل 3-2 شماتیک توربین بادی سرعت متغیر با ژنرانور سیم‌پیچی شده 13

شکل 3-3 شماتیک توربین بادی سرعت متغیر با DFIG 14

شکل 3-4 شماتیک کلی توربین بادی سرعت متغیر با مبدل تمام سطح 15

شکل 3-5 ضریب توان برای توان‌های بالاتر از 100 مگاوات در کد شبکه آلمان 20

شکل 3-6 شرایط کاری توربین بادی با توجه به اندازه فرکانس در کدهای مختلف شبکه 22

شکل 3-7 مقایسه معیار ولتاژ برای توربین بادی در سه کد آلمان ،دانمارک و سوئد 23

شکل 4-1 شماتیک SRF 29

شکل 4-2 توالی مثبت و منفی ولتاژ در حالت عدم تعادل ولتاژ 34

شکل 4-3 سلول جداکننده 37

شکل 4-4 شماتیک کلی DDSRF 37

شکل 4-5 شماتیک ODDSRF-PLL 38

شکل 4-6 مقدار مولفه d و q اندازهگیری شده بوسیلهی روش ODDSRF-PLL برای پرش فاز40 درجه. 39

شکل 4-7 مقایسه ولتاژ اندازهگیری شده بوسیلهی ODDSRF-PLL و PLLاستفاده شده در MATLAB برای حالت اول. 39

شکل 4-8 مقدار مولفه d و q اندازهگیری شده بوسیلهی روش ODDSRF-PLL برای خطای دو فاز به زمین. 40

شکل 4-9 مقایسه ولتاژ اندازهگیری شده بوسیلهی ODDSRF-PLL و PLLاستفاده شده در MATLAB برای حالت دوم. 40

شکل 4-10 مقدار مولفه d و q اندازهگیری شده بوسیلهی روش ODDSRF-PLL برای خطای سه فاز به زمین. 41

شکل 4-11 مقایسه ولتاژ اندازهگیری شده بوسیلهی ODDSRF-PLL و PLLاستفاده شده در MATLAB برای حالت سوم. 41

شکل 4-12 دسته بندی توابع عضویت 43

شکل 4-13 اجزای سیستم فازی 46

شکل 4-14 کلاسه بندی غیر فازی ساز 47

شکل 4-15 اساس کار الگوریتم PSO 51

شکل 4-16 توابع عضویت برای NBF ، NBU ، ، و 53

شکل 4-17 فلوچارت AFPSO 54

شکل 4-18 مشخصه ولتاژ-جریان STATCOM 56

شکل 4-19 شماتیک STATCOM به همراه قابلیت در تولید یا تزریق توان اکتیو راکتیو 57

شکل 4-20 شماتیک STATCOM به همراه بردارهای ولتاژ خروجی STATCOM و شبکه 58

شکل 4-21 انواع کنترل‌کننده‌ها برای مبدل 65

شکل 4-22 قابلیت‌های کنترل پیش بین 67

شکل 4-23 انواع مختلف کنترل پیش بین 69

شکل 4-24 شماتیک مبدل DC-AC 70

شکل 4-25 شمای ساده‌شده‌ی مبدل DC-AC 70

شکل 4-26 بردارهای 8 گانه مدولاسیون SVM 73

شکل 4-27 تغییرات توان اکتیو راکتیو به وسیله‌ی اعمال بردارهای 8 گانه ولتاژ 76

شکل 4-28 نحوه‌ی اعمال بردارهای سه گانه انتخاب‌شده برای کنترل P-DPC 77

شکل 5-1 شماتیک شبکه شبیه‌سازی شده 79

شکل 5-2 کمینه شدن تابع هزینه ITAE 81

شکل 5-3 اندازه ولتاژ مؤلفه‌های d و q پس از بهینه‌سازی ODDSRF 81

شکل 5-4 نحوه‌ی اتصال ODDSRF-PLL ،FLC و P-DPC به یکدیگر 83

شکل 5-5 الف) توان راکتیو تولیدشده با توجه به خطا و تغییرات خطای ولتاژ ب)میزان توان راکتیو مرجع بدست آمده 83

شکل 5-6 پروفیل ولتاژ باس توربین بادی قبل و پس از اعمال STATCOM 85

شکل 5-7 مدت زمان تحمل ولتاژ های توربین بادی بر حسب ولتاژ بر اساس Nordic grid code 86

شکل 5-8 الگوریتم کلی برای بهینه کردن عملکرد کنترل پیش بین 87

 

فهرست جدول‌ها

جدول 3-1 مقایسه مزایا و معایب توربین بادی سرعت ثابت و متغیر 11

جدول 3-2 مقایسه ضریب توان توربین بادی در کدهای شبکه 19

جدول 5-1 قواعد فازی برای ضریب یادگیری 53

جدول 5-2 قواعد فازی برای ضریب یادگیری 53

جدول 5-3 قواعد فازی برای 54

جدول 6-1 نمونه‌هایی از کاربردهای کنترل پیش بین 63

جدول 6-2 اندازه بردارهای ولتاژ 8 گانه بر روی محورهای قاب ساکن 73

جدول 6-3 بردارهای انتخاب‌شده برای اعمال آن به کنترل پیش بین توان مستقیم 76

جدول 7-1 پارامترهای ثابت شبکه 80

جدول 7-2 قواعد فازی برای تولید توان راکتیو مرجع به وسیله‌ی خطا و تغییرات خطای ولتاژ 83

جدول 7-3 مقایسه‌ی ولتاژ باس توربین بادی قبل و بعد اعمال STATCOM 85

 برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۱

پایان نامه مقطع کارشناسی ارشد

رشته: مهندسی برق قدرت

 

موضوع: مبدل­های منبع امپدانسی و ارائه ساختار جدید مبدل منبع امپدانسی گاما نامتقارن

استاد راهنما: دکتر عبدالرضا شیخ­الاسلامی

 

تکه هایی از متن به عنوان نمونه :

 

چکیده:

مبدل­های الکترونیک-قدرت نقش عمده­ای در سیستم­های قدرت دارند. در سال­های اخیر مبدل­های منبع امپدانسی به دلیل داشتن برتری­ها و ویژگی­های منحصر به فرد نسبت به مبدل­های سنتی، مورد توجه بسیاری قرار گرفته­اند.

در این پایان­نامه، ابتدا به بررسی نحوه عملکرد، معرفی روش­های کنترلی و مرور ساختار­های اصلی این مبدل­ها پرداخته و در ادامه با بهره­گیری از مبدل منبع امپدانسی گاما نامتقارن ساختار­های جدیدی ارائه می­گردد.

برتری عمده مبدل­­های پیشنهادی نسبت به ساختار­های قبلی، افزایش ولتاژ خروجی تا اندازه مطلوب، بدون نیاز به تعمیم ساختار و افزودن اجزاء جدید می­باشد. در ساختار این مبدل­ها از یک ترانسفورمر با آرایش گاما ( ) استفاده شده و بهره ولتاژ با کاهش نسبت دور­های ترانسفورمر افزایش می­یابد که موجب صرفه­جویی در هزینه و افزایش بازده آن­ها می­گردد.

در بخش نتایج، روابط به دست آمده از ساختار­های جدید، با شبیه­سازی در محیط سیمولینک متلب تصدیق می­گردند. ضمن این که آنالیز مبدل­ها در حالت پایدار انجام گرفته و از روش کنترلی بوست ساده در شبیه­سازی­ها استفاده شده است.

 

واژه­های کلیدی:

مبدل­های سنتی، مبدل­های منبع امپدانسی، مبدل منبع امپدانسی گاما نامتقارن، روش کنترلی بوست ساده

 

 

فهرست مطالب

عنوان                                                                                                                                    صفحه

فصل اول: مقدمه و کلیات تحقیق  
1-1 مقدمه 2
1-2 تعریف مساله 2
1-3 پیشینه تحقیق 3
1-4 ضرورت و اهداف پژوهش 3
1-5 پیش فرض­های پژوهش 3
1-6 جمع­ بندی و طرح کلی تحقیق 4
فصل دوم: ادبیات و پیشینه تحقیق  
2-1 مقدمه 6
2-2 مبدل­های سنتی 6
2-3 مبدل­های منبع امپدانسی 9
2-4 بازده مبدل­های منبع امپدانسی 11
2-5 سلف و خازن مورد نیاز مبدل­های منبع امپدانسی 14
2-6 حالات کاری مبدل­های منبع امپدانسی 15
2-7 روش­های کنترلی مبدل­های منبع امپدانسی 19
2-7-1 روش کنترلی بوست ساده با حامل مثلثی 19
2-7-2 روش کنترلی بوست ساده با حامل سینوسی 22
2-7-3 روش کنترلی بوست ماکزیمم 24
2-7-4 روش کنترلی بوست ماکزیمم ثابت 25
2-8 مبدل منبع امپدانسی سنتی 27
2-9 مبدل شبه منبع امپدانسی 30
2-10 مبدل منبع امپدانسی ترانس 32
2-11 مبدل منبع امپدانسی گاما 35
2-12 مبدل منبع امپدانسی گاما نامتقارن 37
2-13 مبدل شبه منبع امپدانسی دو طبقه 40
2-14 مبدل منبع امپدانسی سنتی با سلف سوئیچ­شونده 43
2-15 مبدل شبه منبع امپدانسی با سلف سوئیچ­شونده 46
2-16 مبدل منبع امپدانسی افزاینده تعمیم­یافته 48
2-16-1 مبدل منبع امپدانسی افزاینده تعمیم­یافته با استفاده از دیود 49
2-16-2 مبدل منبع امپدانسی افزاینده تعمیم­یافته با استفاده از خازن 52
2-16-3 مبدل منبع امپدانسی افزاینده تعمیم­یافته هیبرید 56
2-17 جمع­بندی 58
فصل سوم: روش تحقیق  
3-1 روش کنترلی بوست ساده با تزریق هارمونیک سوم 60
3-2 مبدل منبع امپدانسی گاما نامتقارن با سلف سوئیچ­شونده 63
3-3 مبدل منبع امپدانسی گاما نامتقارن دو طبقه 68
3-4 مبدل منبع امپدانسی گاما نامتقارن جریان ناپیوسته 71
3-5 مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته با استفاده از دیود 73
3-6 مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته با استفاده از خازن 78
3-7 مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته هیبرید 84
3-8 جمع­بندی 89
   
فصل چهارم: محاسبات و یافته­های تحقیق  
4-1 نتایج شبیه­سازی مبدل منبع   امپدانسی گاما نامتقارن   جریان ناپیوسته به کمک روش کنترلی بوست ساده با تزریق هارمونیک سوم  

91

4-2 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن با سلف سوئیچ­ شونده 94
4-3 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن دو طبقه 98
4-4 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته   با استفاده از دیود 102
4-5 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته با استفاده از خازن 106
4-6 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته هیبرید 110
4-7 بررسی خاصیت کاهندگی-افزایندگی مبدل­های پیشنهادی 115
4-8 جمع­بندی 118
فصل پنجم: نتیجه­گیری و پیشنهادات  
5-1 نتیجه گیری 120
5-2 پیشنهادات 121
مراجع 122
واژه­نامه فارسی به انگلیسی 126
چکیده انگلیسی 128

 

 

 

 

 

 

فهرست جدول­ها

عنوان                                                                                                                                        صفحه

2-1 اجزاء مورد نیاز برای سه اینورتر مختلف 13
2-2 مقایسه بازده سه اینورتر در توان­های مختلف 14
2-3 حالات کاری اینورتر منبع امپدانسی در حالت فعال غیر اتصال کوتاه 17
2-4 حالات کاری اینورتر منبع امپدانسی در حالت صفر غیر اتصال کوتاه 18
2-5 حالات کاری اینورتر منبع امپدانسی در حالت اتصال کوتاه 19
2-6 پارامتر­های مبدل منبع امپدانسی سنتی 28
2-7 پارامتر­های مبدل منبع امپدانسی ترانس 33
4-1 پارامتر­های مبدل منبع امپدانسی گاما نامتقارن جریان ناپیوسته 91
4-2 پارامتر­های مبدل منبع امپدانسی گاما نامتقارن با سلف سوئیچ­شونده 94
4-3 پارامتر­های مبدل منبع امپدانسی گاما نامتقارن دو طبقه 98

 

 

 

 

 

 

 

 

 

 

فهرست شکل­ها

عنوان                                                                                                                                         صفحه

2-1 مبدل منبع ولتاژی (VSI) 7
2-2 مبدل منبع جریانی (CSI) 8
2-3 ساختار کلی مبدل منبع امپدانسی 9
2-4 مبدل منبع امپدانسی با ترکیب معکوس موازی سوئیچ و دیود 10
2-5 مبدل منبع امپدانسی با ترکیب سری سوئیچ و دیود 10
2-6 مبدل منبع ولتاژی با مبدل اضافی افزاینده برای پیل سوختی 11
2-7 مبدل منبع امپدانسی برای پیل سوختی 11
2-8 اینورتر سنتی با ورودی پیل سوختی 12
2-9 اینورتر سنتی همراه با مبدل افزاینده DC-DC با ورودی پیل سوختی 12
2-10 اینورتر منبع امپدانسی با ورودی پیل سوختی 12
2-11 پالس­های PWM رایج بر اساس حامل مثلثی بدون در نظر گرفتن حالت صفراتصال کوتاه  

16

2-11 پالس­های PWM اصلاح شده براساس حامل مثلثی با در نظر گرفتن حالت صفراتصال کوتاه  

16

2-12 حالت غیر اتصال کوتاه در مبدل منبع امپدانسی 17
2-13 حالت اتصال کوتاه در مبدل منبع امپدانسی 18
2-14 نحوه تولید پالس­های اتصال کوتاه به کمک روش کنترلی بوست ساده با حامل مثلثی 20
2-15 روش کنترلی بوست ساده با حامل مثلثی 21
2-16 نحوه تولید پالس­های اتصال کوتاه به کمک روش کنترلی بوست ساده با حامل سینوسی  

22

2-17 نمودار بهره ولتاژ بر حسب اندیس مدولاسیون در روش کنترلی بوست ساده با حامل مثلثی و حامل سینوسی  

23

2-18 روش کنترلی بوست ساده با حامل سینوسی 23
2-19 نحوه تولید پالس­های اتصال کوتاه به کمک روش کنترلی بوست ماکزیمم 25
2-20 روش کنترلی بوست ماکزیمم 25
2-21 نحوه تولید پالس­های اتصال کوتاه به کمک روش کنترلی بوست ماکزیمم ثابت 26
2-22 مبدل منبع امپدانسی سنتی 27
2-23 نتایج شبیه­سازی مبدل منبع امپدانسی سنتی 29
224 مبدل شبه منبع امپدانسی 30
2-25 نتایج شبیه­سازی مبدل شبه منبع امپدانسی 31
2-26 مبدل منبع امپدانسی ترانس 32
2-27 نتایج شبیه­سازی مبدل منبع امپدانسی ترانس 34
2-28 مبدل منبع امپدانسی گاما 35
2-29 نتایج شبیه­سازی مبدل منبع امپدانسی گاما 36
2-30 مبدل منبع امپدانسی گاما نامتقارن 37
2-31 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن 39
2-32 مبدل شبه منبع امپدانسی دو طبقه 40
2-33 نتایج شبیه­سازی مبدل شبه منبع امپدانسی دو طبقه 42
2-34 مبدل منبع امپدانسی سنتی با سلف­ سوئیچ­شونده 43
2-35 نتایج شبیه­سازی مبدل منبع امپدانسی سنتی با سلف سوئیچ­شونده 44
2-36 تعمیم اول مبدل منبع امپدانسی سنتی با سلف­ سوئیچ­شونده 45
2-37 مبدل شبه منبع امپدانسی با سلف سوئیچ­شونده 46
2-38 نتایج شبیه­سازی مبدل شبه منبع امپدانسی با سلف سوئیچ­شونده 47
2-39 تعمیم اول مبدل شبه منبع امپدانسی با سلف سوئیچ­شونده 48
2-40 مبدل منبع امپدانسی افزاینده تعمیم­یافته با استفاده از دیود 49
2-41 نتایج شبیه­سازی مبدل منبع امپدانسی افزاینده تعمیم­یافته با استفاده از دیود 51
2-42 تعمیم دوم مبدل منبع امپدانسی افزاینده تعمیم­یافته با استفاده از دیود (جریان پیوسته) 52
2-43 مبدل منبع امپدانسی افزاینده تعمیم­یافته با استفاده از خازن 53
2-44 نتایج شبیه­سازی مبدل مبدل منبع امپدانسی افزاینده تعمیم­یافته با استفاده از خازن 55
2-45 تعمیم دوم مبدل منبع امپدانسی افزاینده تعمیم­یافته با استفاده از خازن (جریان پیوسته) 56
2-46 مبدل منبع امپدانسی افزاینده تعمیم­یافته هیبرید (جریان ناپیوسته) 57
2-47 نتایج شبیه­سازی مبدل منبع امپدانسی افزاینده هیبرید 57
3-1 نحوه تولید پالس­های اتصال کوتاه به کمک روش کنترلی بوست ساده با حامل مثلثی 60
3-2 روش کنترلی بوست ساده با تزریق هارمونیک سوم 61
3-3 موج مبنا اصلی 62
3-4 موج هارمونیک سوم 62
3-5 موج مبنا اصلی با هارمونیک سوم 62
3-6 مبدل شبه منبع امپدانسی با سلف سوئیچ­شونده 63
3-7 ساختار پیشنهادی مبدل منبع امپدانسی گاما نامتقارن همراه با سلف سوئیچ­شونده 64
3-8 مدار معادل مبدل منبع امپدانسی گاما نامتقارن همراه با سلف سوئیچ­شونده در حالت غیر اتصال کوتاه  

65

3-9 مدار معادل مبدل منبع امپدانسی گاما نامتقارن همراه با سلف سوئیچ­شونده در حالت اتصال کوتاه  

66

3-10 مبدل شبه منبع امپدانسی دو طبقه 68
3-11 ساختار پیشنهادی مبدل منبع امپدانسی گاما نامتقارن دو طبقه 68
3-12 مدار معادل مبدل منبع امپدانسی گاما نامتقارن دو طبقه در حالت غیر اتصال کوتاه 69
3-13 مدار معادل مبدل منبع امپدانسی گاما نامتقارن دو طبقه در حالت اتصال کوتاه 69
3-14 ساختار پیشنهادی مبدل منبع امپدانسی گاما نامتقارن جریان ناپیوسته 71
3-15 مدار معادل مبدل منبع امپدانسی گاما نامتقارن جریان ناپیوسته در حالت غیر اتصال کوتاه  

71

3-16 مدار معادل مبدل منبع امپدانسی گاما نامتقارن جریان ناپیوسته در حالت اتصال کوتاه 72
3-17 مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از دیود 73
3-18 ساختار پیشنهادی مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از دیود (جریان پیوسته)    

74

3-19 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از دیود (جریان پیوسته) در حالت غیر اتصال کوتاه  

74

3-20 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از دیود (جریان پیوسته) در حالت اتصال کوتاه  

75

3-21 ساختار پیشنهادی مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از دیود (جریان ناپیوسته)  

76

3-22 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از دیود (جریان نا پیوسته) در حالت غیر اتصال کوتاه  

77

3-23 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از دیود (جریان نا پیوسته) در حالت اتصال کوتاه  

77

3-24 مبدل منبع امپدانسی افزاینده تعمیم­یافته با استفاده از خازن 79
3-25 ساختار پیشنهادی مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته با استفاده از خازن (جریان پیوسته)  

79

3-26 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از خازن (جریان پیوسته) در حالت غیر اتصال کوتاه  

80

3-27 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از خازن (جریان پیوسته) در حالت   اتصال کوتاه  

80

3-28 ساختار پیشنهادی مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته با استفاده از خازن (جریان نا پیوسته)  

82

3-29 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از خازن (جریان نا پیوسته) در حالت غیر اتصال کوتاه  

82

 

3-30 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته با استفاده از خازن (جریان           نا پیوسته) در حالت اتصال کوتاه                                                                                                   83                

3-31 مبدل منبع امپدانسی افزاینده تعمیم­یافته هیبرید 84
3-32 ساختار پیشنهادی مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته هیبرید (جریان پیوسته)  

85

3-33 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته هیبرید (جریان پیوسته) در حالت غیر اتصال کوتاه  

85

3-34 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته هیبرید (جریان پیوسته) در حالت اتصال کوتاه  

86

3-35 ساختار پیشنهادی مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته هیبرید (جریان نا پیوسته)  

87

3-36 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته هیبرید (جریان نا پیوسته) در حالت غیر اتصال کوتاه  

88

3-37 مدار معادل مبدل منبع امپدانسی گاما نامتقارن تعمیم یافته هیبرید (جریان نا پیوسته) در حالت اتصال کوتاه  

88

4-1 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن جریان ناپیوسته با تزریق هارمونیک سوم به موج­ مبنا  

93

4-2 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن همراه با سلف سوئیچ­شونده 97
4-3 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن دو طبقه 101
4-4 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته با استفاده از دیود 105
4-5 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته با استفاده از خازن 109
4-6 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن تعمیم­یافته هیبرید 115

4-7 نتایج شبیه­سازی مبدل منبع امپدانسی گاما نامتقارن با سلف سوئیچ­شونده (کاهنده)          117

 

 

                                                      

 

فصل اول

مقدمه و کلیات تحقیق

 


1-1 مقدمه

اینورتر­ها یکی از اقسام مبدل­های الکترونیک-قدرت می­باشند که یک ولتاژ ورودی مستقیم را به ولتاژ خروجی متناوب تبدیل می­کنند. در این مبدل­­ها حاصل شدن یک ولتاژ خروجی با شکل موج سینوسی مطلوب است، اما در عمل به دلیل وجود هارمونیک­ها این شکل موج­ها غیر سینوسی (تقریبا مربعی) و همراه با اعوجاج می­باشند. اگرچه در کاربرد­های توان­ بالا خروجی سینوسی ضروری  می­باشد.

بهره ولتاژ خروجی که همان نسبت ولتاژ خروجی متناوب به ولتاژ مستقیم ورودی می­باشد، یک پارامتر مهم در اینورتر­ها محسوب می­شود. در صورتی­ که بهره ولتاژ بزرگتر از یک باشد اینورتر­ها افزاینده1 و برای بهره ولتاژ­های کوچکتر از یک اینورتر کاهنده2 خواهد بود. مبدل­های منبع امپدانسی3 دارای ویژگی افزایندگی و کاهندگی هم­ زمان می­باشند که این ویژگی در مبدل­های سنتی دیده    نمی­شود. علاوه بر این مبدل­های سنتی دارای محدودیت­ها و معایب دیگری نیز هستند که مبدل­های منبع امپدانسی این معایب را پوشش می­دهند. از همین رو در این تحقیق به بررسی دقیق و موشکافانه مبدل­های منبع امپدانسی می­پردازیم.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

ابعاد فیزیولوژیکی تمرینات پلایومتریک

بازتاب کششی یکی از اصلی ترین مکانیزم­ها در چرخه کشش- انقباض(کوتاه شدن) است. بازتاب کشش موجب می‌شود تا عضلات هنگام کشیده شدن منقبض شده و مانع انقباض عضلات مخالف می‌شود.

دوک­‌های  عضلانی[1] (به عنوان گیرنده­های عضلانی)  نسبت به کشش عضله و سرعت کشش حساس می­باشند در نتیجه با کشش عضله این گیرنده تحریک شده، اطلاعات و پیام عصبی را به مراکز عصبی در نخاع ارسال می‌کنند. تارهای عصبی آوران با ارسال پیام و تحریک عضلات از کشش بیش از اندازه عضله جلوگیری می‌کنند. این بدین مفهوم است که عضلات با جلوگیری از کشش بیشتر منقبض شده و عضلات مخالف غیر فعال شده که نتیجه این فعالیت تولید یک نیروی عضلانی قوی تر است (جیمز و همکاران، 1386).

کومی‌و همکارانش[2] در سال 1986، افزایش در نیروی تولیدی در تمرینات پلایومتریک را نتیجه افزایش طول عضله قبل از هر نوع انقباض درون گرا بیان کرده اند. آنها در تحقیقات خود به این نتیجه رسیدند که افزایش زمان استراحت بین فاز برون گرا و درون گرا (فاز استهلاک) موجب کاهش تولید نیرو شده و علت آن را هم از بین رفتن انرژی حاصل از بازتاب کششی بیان کردند. در سال 1996 چو[3]و همکاران بیان کردند که تمرینات پلایومتریک به خاطر تقویت سرعت بازتاب کششی موجب فراخوان بیشتر واحدهای حرکتی می­شود. همچنین نتیجه گیری که آن‌ها به آن دست یافتند. این بود که تمرینات پلایومتریک موجب سفتی اجزای الاستیک عضله می‌شود (شیران، 1385).

یکی از نکات مهم در اجرای تمرینات پلایومتریک، اهمیت بیشتر سرعت کشش در برابر  میزان کشش است. سرعت کم باعث پاسخ الاستیکی عضله و بازتاب کشش و از بین رفتن آن‌ها به صورت گرمایی می­شود. بدین صورت که کاهش مرحله استراحت موجب افزایش پاسخ عملکردی در نتیجه خاصیت الاستیک و بازتاب کششی می‌شود (جیمز و همکاران، 1386. جیمز و همکاران، 1386).

با توجه به توضیحات فوق می‌توان نتیجه گیری کرد که تمرینات پلایومتریک باعث تغییرات عضلانی، افزایش سرعت بازتاب، سفتی اجزای الاستیک، کاهش تحریک پذیری گیرنده‌های مهار، هماهنگی در سیستم عصبی عضلانی، تقویت حساسیت دوک­های عضلانی، فرا خوان واحد‌های حرکتی بیشتر می‌شود.



1. Muscle Spindle

[2] . Komi et al

[3] . Chu 1996

دانلود متن کامل پایان نامه با فرمت ورد

  • admin admin
  • ۰
  • ۰

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق الکترونیک گرایش قدرت

با عنوان :مدیریت انرژی خوشه‌ایِ بارهای متصل‌به‌همِ پاسخگو به قیمت با رویکرد  کارایی و برابری

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

پایان‌نامه کارشناسی ارشد رشته مهندسی برق – قدرت آقای علیرضا وهابی
تحت عنوان

 

مدیریت انرژی خوشه‌ایِ بارهای متصل‌به‌همِ پاسخگو به قیمت با رویکرد کارایی و برابری

 

 

 

در تاریخ 19/3/1394 توسط کمیته تخصصی زیر مورد بررسی و تصویب نهایی قرار گرفت.

  • استاد راهنما                    دکتر محمد‌امین لطیفی
  • استاد مشاور                    دکتر غلامرضا یوسفی
  • استاد داور دکتر رحمت‌ا… هوشمند
  • استاد داور دکتر احمدرضا تابش

تکه هایی از متن به عنوان نمونه :

فهرست مطالب

     عنوان                                                                                                                                                                         صفحه

فهرست مطالب.. هشت

فهرست اشکال.. ده

فهرست جداول.. یازده

لیست نمادها.. سیزده

چکیده.. 1

 

فصل اول: مقدمه

1-1……………………………………………………………………………………………………….. پیشگفتار.. 2

1-2……………………………………………… توابع رفاه اجتماعی و مدیریت انرژی.. 4

1-3……………………………… مروری بر ساختارهای مدیریت انرژی الکتریکی.. 6

1-3-1………………………………………………………. ساختار مدیریت انرژی متمرکز.. 7

1-3-2……………………………………………….. ساختار مدیریت انرژی غیرمتمرکز.. 7

1-3-3………………………………………………………. ساختار مدیریت انرژی ترکیبی.. 8

1-4……………………………………………………………. اهداف و نوآوری­های پایان­نامه.. 9

1-5…………………………………………………………………. مروری بر ساختار پایان­نامه.. 11

 

فصل دوم: مدیریت انرژی خوشه­ای از بارهای پاسخگو به قیمت بر اساس بازی همکارانه

2-1……………………………………….. پیشگفتار 13

2-2………………………………………… مدلسازی 14

2-2-1………………………………….. فروض مسأله 14

2-2-2……………………………………. فرمول‌بندی 15

2-2-3……………. نقد مسأله کلاسیک مدیریت انرژی ترکیبی 19

2-2-4 مدلسازی مسأله مدیریت انرژی ترکیبی بر اساس بازی همکارانه 20

2-3……………………………………… نتایج عددی 21

2-3-1…………………… ترکیب اول: خوشه‌ای از دو بار 23

2-3-2…………………… ترکیب دوم: خوشه‌ای از سه بار 29

2-3-3………………….. ترکیب سوم: خوشه‌ای از هفت بار 34

2-4……………………………… جمع‌بندی و نتیجه‌گیری 39

 

فصل سوم: مدلسازی مسأله انتخاب نقطه تعادل به کمک بهینهسازی دوسطحی

3-1……………………………………………………………………………………………………….. پیشگفتار.. 41

3-2 مدلسازی انتخاب نقطه تعادل در مسأله مدیریت انرژی ترکیبی به‌صورت یک مسأله بهینه‌سازی.. 42

 

 

3-3………………………………… تبدیل مسأله انتخاب نقطه تعادل به MPCC.. 44

3-4…………………………………………. استفاده از روش خطی‌سازی FM در MPCC.. 50

3-5… تبدیل مسأله انتخاب نقطه تعادل مدیریت انرژی به MPPDC.. 53

3-6………………… استفاده از روش گسترش باینری در خطی‌سازی MPPDC.. 55

3-7………………………………………………………………………….. جمع‌بندی و نتیجه‌گیری.. 59

 

فصل چهارم: معرفی معیارهای برابری تخصیص در انتخاب نقطه تعادل و نتایج عددی

4-1……………………………………… پیشگفتار 60

4-2…………………………….. توابع هدف پیشنهادی 61

4-2-1…………………… تابع هدف حداقل فاصله (MD) 61

4-2-2…………………. تابع هدف حداقل نسبت‌ها (MND) 62

4-2-3………. تابع هدف حداقل­سازی تفاضل نسبت‌ها (MDND) 62

4-3……………………………………. نتایج عددی 63

4-4………………………………… مسائل محاسباتی 65

4-4-1…………………. ترکیب اول: خوشه‌ای از دو بار 65

4-4-2…………………. ترکیب دوم: خوشه‌ای از سه بار 69

4-4-3………………… ترکیب سوم: خوشه‌ای از هفت بار 73

4-5……………………… جبران کاهش کارایی در شبکه 77

4-5-1…………………….. روش جبران نسبت‌های مساوی 78

4-5-2…………………………………. نتایج عددی 79

4-6……………………………. جمع‌بندی و نتیجه‌گیری 81

 

فصل پنجم: نتیجهگیری و پیشنهادات

5-1……………………………. جمع‌بندی و نتیجه‌گیری 83

5-2…………………………………….. پیشنهادات 88

 

پیوست الف: مسأله بهینه­سازی چندهدفه.. 89

پیوست ب: مسائل بهینه‌سازی چندسطحی.. 92

پیوست ج: شرایط بهینگی KKT.. 103

پیوست د: دوگان مسأله بهینه­سازی.. 105

مراجع.. 107

 

 

فهرست اشکال

 

شکل ‏1‑1 ساختار مدیریت انرژی ترکیبی……………………………………………………… 9

شکل ‏2‑1 پله‌های پیشنهادی بار i برای مصرف انرژی در ساعت t…………. 16

شکل ‏2‑2 محاسبه انرژی مصرفی بار i در فاصله ساعت t1 تا t2 با استفاده از قانون ذوزنقه‌ای………………………………………………………………………………………………………….. 17

شکل ‏2‑3 مثالی از یک شبکه محلی با شین‌های داخلی 3،2 و 5 و شین‌های متصل به شبکه اصلی 1 و 4……………………………………………………………………………………………………… 18

شکل ‏2‑4 شبکه 5 شینه پیشنهادی………………………………………………………………… 22

شکل ‏2‑5 شبکه 5 شینه با خوشه‌ای از دو بار………………………………………… 23

شکل ‏2‑6 درصد کاهش مازاد بارها و مازاد کل در سناریوهای الف-2 تا الف-4 نسبت به IP در شبکه با خوشه‌ای از دو بار……………………………………………………… 25

شکل ‏2‑7 جبهه پارتو در سناریوهای الف-2 تا الف-4 در شبکه با خوشه‌ای از دو بار…………………………………………………………………………………………………………………………… 27

شکل ‏2‑8 مقایسه جبهه پارتو در سناریوهای الف-4 و ب-1 در شبکه با خوشه‌ای از دو بار…………………………………………………………………………………………………………………….. 28

شکل ‏2‑9 مقایسه جبهه پارتو در سناریوهای الف-4 و ب-2 در شبکه با خوشه‌ای از دو بار…………………………………………………………………………………………………………………….. 28

شکل ‏2‑10 مقایسه جبهه پارتو در سناریوهای الف-4 و ب-3 در شبکه با خوشه‌ای از دو بار…………………………………………………………………………………………………………………….. 29

شکل ‏2‑11 شبکه 5 شینه با خوشه‌ای از سه بار………………………………………. 29

شکل ‏2‑12 درصد کاهش مازاد بارها و مازاد کل در سناریوهای الف-2 تا الف-4 نسبت به IP در شبکه با خوشه‌ای از سه بار……………………………………………………… 32

شکل ‏2‑13 جبهه پارتو در سناریو الف-4 در شبکه با خوشه‌ای از سه بار      33

شکل ‏2‑14 شبکه 5 شینه با خوشه‌ای از هفت بار…………………………………….. 34

شکل ‏2‑15 مقایسه درصد کاهش مازاد بارهای 1 تا 4 و 6 تا 7 در سناریوهای الف-4 و ب-1 نسبت به IP در شبکه با خوشه‌ای از هفت بار……………………………. 37

شکل ‏2‑16 مقایسه درصد کاهش مازاد بارهای 1 تا 6 در سناریوهای الف-4 و ب-2 نسبت به IP در شبکه با خوشه‌ای از          هفت بار………………………………. 38

شکل ‏2‑17 مقایسه درصد کاهش مازاد بارهای 1 تا 6 در سناریوهای الف-4 و ب-3 نسبت به IP در شبکه با خوشه­ای از         هفت بار………………………………… 38

شکل ‏4‑1 جبهه پارتو سناریو الف-4 و نقاط تعادل روش‌های مختلف در شبکه با خوشه‌ای از دو بار……………………………………………………………………………………………………….. 68

شکل الف-1: جبهه پارتو مثالی از دو بازیگر فرضی…………………………… 91

شکل ‏ب‑1 ساختار OPcOP با n مسأله بهینه‌سازی مقیدکننده…………………… 94

شکل ‏ب‑2 ساختار MPCC با n مسأله بهینه‌سازی سطح پایین……………………. 96

شکل ‏ب‑3 ساختار OPcLP با n مسأله بهینه‌سازی خطی سطح پایین…………… 99

شکل ‏ب‑4 ساختار MPPDC با n مسأله بهینه‌سازی خطی سطح پایین…….. 101

 

 

 

 

 

فهرست جداول

 

 

جدول ‏2‑1 قیمتهای ساعتی انرژی (برحسب $/MWh)…………………………………… 22

جدول ‏2‑2 اطلاعات شبکه 5 شینه………………………………………………………………….. 23

جدول ‏2‑3 مشخصات فنی بارها در شبکه با خوشه‌ای از دو بار…………… 24

جدول ‏2‑4 حداقل سطح بار ساعتی برای بارها در شبکه با خوشه‌ای از دو بار        24

جدول ‏2‑5 اطلاعات تابع مطلوبیت در شبکه با خوشه‌ای از دو بار…….. 24

جدول ‏2‑6 مقادیر منفی مازاد بارها در شبکه با خوشه‌ای از دو بار در طول 24 ساعت (برحسب $)………………………………………………………………………………………………………… 25

جدول ‏2‑7 مقایسه درصد کاهش مازاد در سناریوهای الف-4 و ب-1 تا ب-3 نسبت به IP در شبکه با خوشه‌ای از دو بار…………………………………………………………………. 26

جدول ‏2‑8 مشخصات فنی بارها در شبکه با خوشه‌ای از سه بار…………… 30

جدول ‏2‑9 حداقل سطح بار ساعتی برای بارها در شبکه با خوشه‌ای از سه بار        30

جدول ‏2‑10 اطلاعات تابع مطلوبیت در شبکه با خوشه‌ای از سه بار….. 31

جدول ‏2‑11 مقادیر منفی مازاد بارها در شبکه با خوشه‌ای از سه بار در طول 24 ساعت (برحسب $)……………………………………………………………………………………………… 31

جدول ‏2‑12 مقایسه درصد کاهش مازاد در سناریوهای الف-4 و ب-1 تا ب-3 نسبت به IP در شبکه با خوشه‌ای از سه بار…………………………………………………………………. 33

جدول ‏2‑13 مشخصات فنی بارها در شبکه با خوشه‌ای از هفت بار………. 34

جدول ‏2‑14 حداقل سطح بار ساعتی برای بارها در شبکه با خوشه‌ای از هفت بار   35

جدول ‏2‑15 اطلاعات تابع مطلوبیت در شبکه با خوشه‌ای از هفت بار… 35

جدول ‏2‑16 مقادیر منفی مازاد بارها در شبکه با خوشه‌ای از هفت بار در طول 24 ساعت (برحسب $)……………………………………………………………………………………………… 36

جدول ‏2‑17 درصد کاهش مازاد در سناریوهای الف-2 تا الف-4 نسبت به IP در شبکه با خوشه‌ای از هفت بار………………………………………………………………………………………. 36

جدول ‏2‑18 اطلاعات جبهه پارتو در نقاط ضریب وزنی واحد برای هر بار در سناریو الف-4 در شبکه با خوشه‌ای از هفت بار………………………………………………….. 39

جدول ‏4‑1 مقادیر منفی مازاد بارها و مازاد کل در روش‌های مختلف در شبکه با خوشه‌ای از دو بار در طول 24 ساعت       (برحسب $)………………………… 66

جدول ‏4‑2 مقادیر ضرایب وزنی بارهای شبکه در روش‌های مختلف در شبکه با خوشه‌ای از دو بار……………………………………………………………………………………………………………… 66

جدول ‏4‑3 مقادیر SRP بارها و مازاد کل نسبت به IP و مقادیر معیارهای SSP و MSSP در شبکه با خوشه‌ای از دو بار…………………………………………………………………. 66

جدول ‏4‑4 مقایسه SRP بار 1 نسبت به IP در سناریوهای الف-4 و ب-1 در روش‌های مختلف در شبکه با خوشه‌ای از دو بار…………………………………………………………………. 69

جدول ‏4‑5 مقادیر منفی مازاد بارها و مازاد کل در روش‌های مختلف در شبکه با خوشه‌ای از سه بار در طول 24 ساعت     (برحسب $)……………………….. 70

جدول ‏4‑6 مقادیر ضرایب وزنی بارهای شبکه در روش‌های مختلف در شبکه با خوشه‌ای از سه بار……………………………………………………………………………………………………………… 70

جدول ‏4‑7 مقادیر SRP بارها و مازاد کل نسبت به IP و مقادیر معیارهای SSP و MSSP در شبکه با خوشه‌ای از سه بار…………………………………………………………………. 70

جدول ‏4‑8 مقایسه SRP بار 2 و 3 در سناریوهای الف-4 و ب-1 در روش‌های مختلف در شبکه با خوشه‌ای از سه بار……………………………………………………………………….. 72

 

 

جدول ‏4‑9 مقادیر منفی مازاد بارها و مازاد کل در روش‌های مختلف در شبکه با خوشه‌ای از هفت بار در طول 24 ساعت (برحسب $)………………………………….. 73

جدول ‏4‑10 مقادیر ضرایب وزنی بارهای شبکه در روش‌های مختلف در شبکه با خوشه‌ای از هفت بار……………………………………………………………………………………………………… 73

جدول ‏4‑11 مقادیر SRP بارها و مازاد کل نسبت به IP و مقادیر معیارهای SSP و MSSP در شبکه با خوشه‌ای از هفت بار……………………………………………………………….. 74

جدول ‏4‑12 مقادیر SSP، MSSP و کارایی، پس از حذف بار 1 از ترکیب خوشه‌ای از هفت بار…………………………………………………………………………………………………………………….. 75

جدول ‏4‑13 مقایسه SRP بار 1 تا 4 و 6 تا 7 در سناریوهای الف-4 و ب-1 نسبت به IP در روش‌های مختلف در شبکه با خوشه‌ای از هفت بار………………………… 76

جدول ‏4‑14 مقادیر جبرانسازی شده مازاد بارها و مازاد کل در روش‌های مختلف در شبکه با خوشه‌ای از دو بار (برحسب $)…………………………………………………… 79

جدول ‏4‑15 مقادیر جبران‌سازی شده SRP بارها و مازاد کل نسبت به IP در روش‌های مختلف در شبکه با خوشه‌ای از دو بار…………………………………………………….. 79

جدول ‏4‑16 مقادیر جبران‌سازی شده مازاد بارها و مازاد کل در روش‌های مختلف در شبکه با خوشه‌ای از سه بار (برحسب $)…………………………………………………… 80

جدول ‏4‑17 مقادیر جبران‌سازی شده SRP بارها و مازاد کل نسبت به IP در روش‌های مختلف در شبکه با خوشه‌ای از سه بار…………………………………………………….. 80

جدول ‏4‑18 مقادیر جبران‌سازی شده مازاد بارها و مازاد کل در روش‌های مختلف در شبکه با خوشه‌ای از هفت بار (برحسب $)………………………………………………… 80

جدول ‏4‑19 مقادیر جبران‌سازی شده SRP بارها و مازاد کل نسبت به IP در روش‌های مختلف در شبکه با خوشه‌ای از هفت بار………………………………………………….. 81

 برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
Cryptography Entrepreneurs Centralbanks Symbol
 از کرم گریم سفید کننده صورت چگونه استفاده کنیم
 راهنمای خرید لباس عروس
   

با این حال، بازده استیبل کوین بستگی داردروی سکه انتخابی و نوع سپرده شما.

Mortgagefraud HMTreasury Venturecapital Ethereum MXC 価格 ( MXC ) Contagion PieterWuille Relativevalue What Is a DAO? Gas Price Metatransaction John Adler BitcoinETF Deflation Token Swap 1hr Accounting Token SHIB CAD Requests jackmallers AdairTurner   The MBOX Token SaudiArabia CaitlinLong Winding Down How-to Guides arkinvestmentmanagment Basisrisk Algorithmics FTSE100   JayClayton Raiden Network HI Price ( HI ) Exchanges Mining Rewards BitcoinMiner ConsenSys Ledger ALGO EUR Basistrading Digitalassets International Protiviti Blockchain SpeedyTrial Giá NEM ( XEM ) Composable Token BTC CNY ETH USD IceClearCredit MartyBent BitcoinATM Fueloil DBSBank Crypto Casey Regulation ManGroup Conferences BGCPartners Pricerisk California Mining Rig هدایای تبلیغاتی Tier1capital ETH NZD Metatransaction ErisExchange Swedbank Relativevalue Keylogger   Euroclear Investmentbanks SLP GBP Lido Finance Unchainedcapital Terrorism What Is Web 3.0? SKILL CHF ERC-721 Secure Element LTC ZAR Venture Capital MonetaryPolicy SHIB BCH SouthAfrica

RiskMetrics Recession Investing XMR RUB Cryptoasset GoldmanSachs Relativevalue

SLP PHP Spot Trading

 

FTSERussell

آلیاژ های پلیمری مفهوم اعتماد اجتماعی دعوی تصرف عدوانی مقدار مدعی به افزایش محافظه کاری سود بازارگرایی حقوق موضوعه ایران ارزیابی مالی غیرسندرمی تاپسیس تفکر انتقادی عدم تقارن زمانی سود اسید پاشی حقوق بین الملل محیط زیست چک تضمین شده آموزش گروهی فرهنگ اشتغال بانوان رادیولوژی سیستم دسته‌بند فازی کانون بانکها ضابطان دادگستری کمبود توجه مسئولیت اجتماعی فریقین از هم گسیختگی خانوادگی نشانگان روانشناختی منابع سازمان روان شناسی تمرین مقاومتی جو سازمانی سیاست جنائی تقویت روحیه کارآفرینی تغییر جنسیت بیزین دینامیک چرخش اجباری یاد داری اختلال سلو پروانه کسب چرخه عمر شرکت­ها والدین معتاد شرط صفت مصارف روستایی تجارت الکترونیکی ارزش کالا جنس مخالف عروق کرونری ورشکستگی مالی خلاقیت کارکنان دانش بومی Fair Ness توسعه انسانی معیارهای ریسک نقدینگی توسعه سیاسی برائت از جرایم اراضی بایر مدیریت خدمات بهداشتی و درمانی صادرات مصنوعات بازار‌گرائی دلالت های اخلاق نوسانات سود شرکت ها جبران خسارت ناشی از جرم قاعده احسان جریانات نقدی سب رهبری کشف دانش افزوده اقتصادی نرخ موثر مالیات سند رسمی مالکیت ضریب واکنش سود کیفر حبس رسالت مطبوعات اجتماع مدار هالت وینترز محل سکونت تحقیق رشته کامپیوتر ریزماهواره ادراک زمان مدیریت پروژه قوانین حضانت قوانین فعلی بافت های شهری یکپارچه سازی اعتماد فعل زیانبار تعقیب اثر بخشی مدارس آزادی عمل مدل EFQM تقوای خدمت تحلیل رفتار خرید مشتری رافع وصف متخلفانه AHP- TOPSIS مدت عده طلاق مسئولیت کیفری غذادهی مجدد نیازمندی‌های عملیاتی نادر خاکی جرایم خانوادگی بهره هوشی پرچم رسمی ایران روش TOPSIS عملکرد سازمانهای خصوصی ژن هورمون خالص دارایی منابع زغال سنگ مزایده ژیروسکوپ علل عدم توسعه بیمه های اشخاص صادق هدایت زنان شاغل نظریه عقل عملیات مالی درشت دانه سینمای ایران اسناد خزانه آموزش علمی شیوه های جبران خسارت درآمد کافی خوداتکایی علل سرقت جذب دانش خواص اپتیکی حقوق اشخاص گزینش گری در دین تصمیمگیری تعهدسازمانی رژیم تحریم دادرسی افتراقی ژئوفیزیک مؤلفه های انگیزش تحصیلی کمیسیون نظارت ارشد ها استرس زدایی ریسک های زنجیره سیستمهای چند عامله مدیریت صنعتی پایانه های تحریر ترکه مؤسسات فرهنگی جایگاه بورس کرامت انسانی متغیرهای زیست شناختی کیفر تکمیلی تحلیل پایداری تونل وثیقه های مدنی اوراق بهادار توانمندسازی اقتصادی سیل مدیریت کیفیت فراگیر در آموزش مدل سروکوال مطالعه تطبیقی حقوق داده کاوی شیوه شناختی- رفتاری خودکنترلی تعیین مجازات سود مشمول مالیات بیوتکنولوژی کشاورزی خودمدیریتی شرکت مختلط سهامی زندگی روستاییان شیلات ایستگاه‌های آتش‌نشانی ویل دعاوی سرمایه شرکت های پذیرفته شده تنش شوری مجرمین خطرناک ملاک تعیین قیمت سازه چوب افزایش بهره‌وری تحقیق رشته مدیریت ارتکاب جـرم اعتبار رشد چند حسگری درآمد اختصاصی بررسی تجربی DEMATEL رشد عملکرد سیستم بانکی سازمان دامپزشکی تحجیر شرایط احساسی تصویر برند حسین کرد سوانح طبیعی بانکداری آنلاین مدیریت کلاس عملکردنواوری تقارن اطلاعاتی توسعه گردشگری شرکت های سهامی عام تفاله انگور مواد اپیوئیدی ارشد نرم افزار مرتع داری قراردادهای بیمه کالای امانی مزیت رقابتی جذب مشتریان حق مرغوبیت سطوح دانشی نوع قلمه استراتژی های بازاریابی فسخ تکرار جرم زندگی کاری شخصیت بزهکار روش بدیعه پردازی ضمان درک رفتارهای شهروندی محصورسازی مستخدم رسمی احیای زمین مدلول عقد قرار موقوفی سیاست تقسیم سود نسبت پرداخت سود حفظ مشتری بازاریابی ارتباطی مدیریت مسکن رویکرد ارتباطی ستیر حکم نهایی مدیریت تجارت عوامل گذار آمیخته سطح بلوغ الکترونیک علوفه‏ ای موانع خلاقیت فردی فرض ثلث ترکه نانو کامپوزیت ها اضطراب سلامت تورم قوانین کیفری مولفه‌های خلاقیت سازگاری عاطفی ارزیابی توانها عزل وکیل تنوع فرهنگی سازمان دولتی دینامیکی دیوان بین المللی بارگیری و تخلیه آموزش مدارا ارشد حقوق انتظارات جنسی ریسک قابل پذیرش وسواس مذهبی سود سهام نقدی بانک مسکن سازمان ذوب آهن اختلال هویت جنسی ارشد کامپیوتر نگرش والدین تلفن همراه سازمانهای ایرانی آدیپوکاین مددکاری فزون‌کنشی بزرگ‌سال BMI افشای اطلاعات مالی دندانپزشکی رفتار مصرف کنندگان اختلافات گروه های تکفیری پروژه های تحقیق ارشد فیزیک تاخیرات پروژه فرصت های کارآفرینانه نسب وارث نقش جنسی تحصیلات کلاسیک سود بازرگانی ارائه مدل عملکرد برند بیوفیزیک ساختار های مالکیت کارخانجات ریسندگی و بافندگی جوجه های نر مدل سازی مدیریت متن کامل کامپیوتر عوارض نوسازی استراتژیهای لان سنجش و آموزش موانع اداری کودکان مبتلا سندرم داون تحلیل رفتار ژئوپولیتیکی رشد اجتماعی بیمه تامین اجتماعی مشکلات تحصیلی حرکت نیترات انعطاف پذیری شناختی روانپزشکی هیدروپونیک مردسالاری مواد مخدر توابع شکافت ورزش شهروندی رضایت جنسی اهدای جنین نکاح منقطع رفتارمسالمت آمیز تدریس اثربخش سودآوری شعب بانک انسان شناسی عدالت توزیعی رتباطات سازمانی عدم قطعیت اطلاعات سرمایه روانشناختی تنگدستی مالی سبک مشارکتی آنالیز اجزای اصلی(PCA)