دانلود پایان نامه های دانشگاه ها

دانلود متن کامل با فرمت ورد- پایان نامه های دانشگاه ها

دانلود پایان نامه های دانشگاه ها

دانلود متن کامل با فرمت ورد- پایان نامه های دانشگاه ها

دانلود متن کامل با فرمت ورد- پایان نامه های دانشگاه ها
همه رشته ها : مدیریت حقوق روانشناسی حسابداری برق عمران کامپیوتر روانشناسی حسابداری مدیریت ادبیات تاریخ فلسفه فقه الهیات

کلمات کلیدی
آخرین مطالب
  • ۰
  • ۰

پایان نامه

مقطع کارشناسی ارشد

رشته: مهندسی برق-گرایش قدرت

عنوان: ارزیابی تأثیر حضور واحد تولید پراکنده بر عملکرد خرده­فروش در بازار برق

استاد راهنما: جناب آقای دکتر تقی بارفروشی

تکه هایی از متن به عنوان نمونه :

چکیده:

در سال­های اخیر، با گسترش فزاینده­ی مصرف برق، نیاز به افزایش تولید انرژی و استفاده از منابع تجدیدپذیر در تولید انرژی الکتریکی به دلایل زیست­محیطی و اقتصادی افزایش یافته است که در این میان واحدهای تولید پراکنده مورد توجه قرار گرفته­است. در ساختار عمودی، اغلب سیاست­های یکسانی برای مصرف­کنندگان متفاوت در نظر گرفته می­شود در صورتیکه در سیستم تجدیدساختار شده، این امکان برای مصرف­کنندگان فراهم است که با مشارکت در بازار برق مشارکت داشته باشند.

در این پایان­نامه، تأثیر حضور واحد تولید پراکنده از نوع حرارتی بر عملکرد خرده­فروش در بازار برق در بازه زمانی کوتاه­مدت و میان­مدت مورد مطالعه قرار گرفته است. خرده­فروش مورد نظر در این پایان­نامه قرارداد آینده و قیمت فروش پیشنهادی به مصرف­کنندگان خود را تعیین می­نماید، بطوریکه عدم­قطعیت در قیمت­های بازار اشتراکی و تقاضای مصرف­کننده را در نظر می­گیرد. نوآوری انجام شده در این پایان­نامه این است که فرض شده است خرده­فروش واحد تولید پراکنده­ی مقیاس کوچک از نوع حرارتی در اختیار دارد و می­تواند علاوه بر مشارکت در بازار اشتراکی و آینده، در برخی از ساعت­ها بخشی از بار مورد نیاز خود را از طریق واحد مقیاس کوچک تأمین نماید. به منظور مدل­سازی عدم قطعیت قیمت بازار لحظه­ای و تقاضای مصرف­کنندگان از مجموعه­ای از سناریوها استفاده شده است. با توجه به بالا بودن حجم مسئله، به منظور کاهش حجم محاسبات با دقت مطلوب، از یک روش کاهش سناریو استفاده شده است. مدل برنامه­ریزی تصادفی دو مرحله­ای ارائه شده یک مسئله برنامه­ریزی آمیخته­ی عدد صحیح (MILP) است که با استفاده از نرم­افزار GAMS حل می­شود. مدل ارئه شده در دو مطالعه موردی به ترتیب با بازه­ی زمانی کوتاه­مدت و میان­مدت مورد آزمایش قرار گرفته است. نتایج بدست آمده به ازاء مقادیر مختلف هزینه بهره­برداری واحد حرارتی و مقادیر مختلف ضریب نفوذ واحد حرارتی نشان می­دهد، استفاده از منابع انرژی پراکنده در بخش خرده­فروشی، علاوه بر اینکه سود خرده­فروش را افزایش می­دهد باعث کاهش ریسک و کاهش قیمت فروش پیشنهادی به مصرف­کنندگان نیز می­شود.

کلمات کلیدی:

بازار برق، بازار آینده، تولید پراکنده، بازار اشتراکی، خرده­فروش، عدم­قطعیت

 

فصل اول

 

مقدمه

 


1-1       پیشگفتار

از جمله مباحثی که هم اکنون پیش روی تصمیم­گیران و سیاست­گذاران صنعت برق در بسیاری از کشورهای دنیا قرار دارد، تفکر تغییر شکل ساختار این صنعت مطابق با روند افزایش کارایی و رقابت در دیگر صنایع می­باشد. لزوم حرکت در این مسیر به دلایل مختلفی چون سرمایه­بر بودن، نا کارآیی اقتصادی ساختار سنتی و انحصاری بودن آن غیر قابل انکار می­باشد.

با گسترش فزاینده­ی مصرف برق، نیاز به افزایش تولید انرژی و استفاده از منابع تجدیدپذیر در تولید انرژی الکتریکی به دلایل زیست­محیطی و اقتصادی افزایش یافته است که در این میان واحدهای تولید پراکنده مورد توجه قرار گرفته­است ]1[. انتظار می­رود در آینده­ای نزدیک استفاده از واحدهای تولید پراکنده در بخش خرده­فروشی بازار برق بطور قابل ملاحظه­ای افزایش یابد. شرکت­های خرده­فروشی در بازار برق به عنوان واسط بین تولیدکنندگان و مصرف­کنندگان فعالیت می­نمایند. فعالیت خرده­فروشان شامل خرید انرژی از بازار عمده­فروشی به منظور فروش آن به مصرف­کنندگان می­باشد. برای یک بازه زمانی میان­مدت، این شرکت­ها باید برای غلبه بر ریسکی که به دلیل متغیر بودن قیمت­های بازار اشتراکی به وجود می­آید، در مورد جایگاه خود در بازار آینده تصمیم­گیری کنند. مسئله مهم این است که خرده­فروشان به یک دانش و آگاهی دقیق در مورد قیمت­های بازار اشتراکی در طول بازه زمانی قراردادهای آینده دست یابند تا بتوانند تصمیمات درستی را در مورد این قراردادها اتخاد نمایند.

امروزه با ایجاد رقابت در سیستم­های قدرت و تجدید ساختار آن، بسیاری از مسائل گذشته تغییر کرده و مسائل جدید و عدم­قطعیت­هایی در مسائل وارد شده که این مسئله انگیزه­ای بسیار قوی جهت استفاده از برنامه­ریزی تصادفی را در حل مسائل ایجاد نموده است. برنامه­ریزی تصادفی یک چارچوب مدل­سازی مناسب را فراهم می­آورد بطوریکه در آن مسائل تصمیم­­گیری تحت شرایط عدم قطعیت به طور مناسب فرمول­بندی می­شود ]2[ و ]3[ . برنامه­ریزی تصادفی به داشتن اطلاعاتی در مورد توابع توزیع پارامترهای غیر­قطعی مثل، قیمت بازار اشتراکی متکی است. هنگامیکه پارامترهای غیر­قطعی با استفاده از توابع توزیع پیوسته یا گسسته مدل می­شوند، امکان فرمول­نویسی یک مسئله برنامه­ریزی ریاضی که عدم­قطعیت در این پارامترها را در نظر می­گیرد امکان­پذیر خواهد شد. هر پارامتر غیر­قطعی توسط مجموعه­ای از نتایج یا سناریو مدل می­شود، بطوریکه هر کدام از سناریوها یک تحقق محتمل از پارامترهای غیر­قطعی را با یک احتمال وقوع مربوطه نشان می­دهد. معمولا تعداد سناریوهای مورد نیاز برای نشان دادن یک پارامتر غیر­قطعی بسیار زیاد است. برای این منظور از روش­های کاهش سناریو برای کاهش تعداد سناریوها استفاده می­شود در حالیکه مشخصات تصادفی پارامترهای غیر­قطعی محفوظ بماند.

عمده­ترین هدف شرکت در بازار آینده غلبه بر ریسک مربوط به عدم­قطعیت قیمت بازار اشتراکی است. بنابراین، مدل کردن ریسک مرتبط با تصمیمات گرفته شده توسط نمایندگان بازار منطقی است. این کار را می­توان مستقیمأ از طریق وارد کردن مقدارهای ریسک در مسئله برنامه­ریزی تصادفی انجام داد ]4[ .

پایان­نامه حاضر ضمن ارائه ­ یکی از مصادیق تجدیدساختار در صنعت برق(نقش واحد تولید پراکنده­ی مقیاس کوچک بر عملکرد خرده­فروش در بازار برق) نتایج حاصل از حضور آن در بازار برق را مورد بررسی قرار خواهد داد. در این فصل به معرفی اهداف کلی طرح و محتویات فصل­های آینده پرداخته می­شود.

خرده­فروش در نظر گرفته شده در این پایان­نامه برای تعیین قرارداد آینده و قیمت فروش پیشنهادی به مصرف­کنندگان خود باید عدم­قطعیت در قیمت­های بازار اشتراکی و تقاضای مصرف­کننده را در نظر بگیرد، همچنین باید این احتمال را در نظر بگیرد که اگر قیمت فروش پیشنهادی به مصرف­کنندگان تا حد کافی رقابتی نباشد مصرف کننده ممکن است خرده­فروش دیگری را انتخاب کند. پس از تصمیم­گیری در مورد بازار آینده و انتخاب قیمت فروش، خرده­فروش باید خرید و فروش خود را در بازار اشتراکی تعیین کند.

نوآوری این پایان­نامه این است که فرض شده است خرده­فروش واحد تولید پراکنده­ی مقیاس کوچک از نوع حرارتی در اختیار دارد و می­تواند علاوه بر مشارکت در بازار اشتراکی و آینده، در برخی از ساعت­ها بخشی از بار مورد نیاز خود را از طریق واحد مقیاس کوچک تأمین نماید و از این طریق به حداکثر سود دست یابد. با توجه به اینکه قیمت بازار اشتراکی و تقاضای مصرف­کنندگان در مدل پیشنهادی دارای عدم قطعیت می­باشد، مدل ارائه شده از نوع تصادفی است. مدل برنامه­ریزی میان­مدت تصادفی دو مرحله­ای ارائه شده یک مسئله برنامه­ریزی آمیخته­ی عدد صحیح (MILP) است که با استفاده از نرم­افزار GAMS مدل شده است.

 برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

پایان نامه

مقطع کارشناسی ارشد

رشته: برق قدرت

عنوان: استراتژی قیمت دهی نیروگاه مجازی در بازار های ذخیره و انرژی با درنظر گرفتن عدم قطعیت در قیمت بازار

استاد راهنما: جناب آقای دکتر تقی بارفروشی

استاد مشاور: جناب آقای دکتر مجید شهابی

 

تابستان

1392

تکه هایی از متن به عنوان نمونه :

چکیده:

در این پایان نامه چهارچوب جدیدی برای برنامه ریزی تدوین استراتژی مشارکت نیروگاههای مجازی در بازارهای انرژی و ذخیره ارائه می شود. طبق تعریف، نیروگاه مجازی مجموعه ای از واحدهای تولید مقیاس کوچک به همراه بار و شبکه تحت پوشش که توسط یک نهاد معین اداره می شود می باشد.

تکنولوژیهای تولید پراکنده که در این پایان نامه مورد توجه می باشند، واحدهای تولید گازی و تولید همزمان برق وحرارت و ذخیره ساز الکتروشیمیایی می باشند. قیمتهای برق بازار عمده فروشی، خرده فروشی، ذخیره مورد نیازو دوره زمانی از جمله پارامترهای مشخص می باشند.

پارامترهایی که شامل عدم قطعیت می باشند عبارتند از: قیمت عمده فروشی انرژی و پیش بینی در تقاضای مصرف.

برای مدل سازی ریاضی مسئله برنامه ریزی مشارکت از مدل غیر تعادلی استفاده می شود. به منظور حل مسئله بهینه سازی از الگوریتم ژنتیک استفاده شده است.

عدم قطعیتهای حاکم بر قیمت عمده فروشی و پیش بینی نیاز مصرف در منطقه تحت پوشش نیروگاه مجازی در نظر گرفته شده و برای مد ل سازی آنها به ترتیب از توابع توزیع احتمال نرمال لگاریتمی و نرمال استفاده شده و جهت تحققهای پارامترهای غیرقطعی از شبیه سازی مونت کارلو استفاده شده است.

نتایج شبیه سازی در این پایان نامه نشان می دهد که چهارچوب ارائه شده ابزار توانمند و مناسبی جهت تدوین استراتژی پیشنهاد تولید نیروگاه مجازی به بازار و تعامل آن با مصرف کنندگان دارای قابلیت قطع بار می باشد.

 

1-1 مقدمه

از جمله مباحثی که هم اکنون پیش روی تصمیم گیران و سیاست گذاران صنعت برق در بسیاری از کشورها ی دنیا قرار دارد، تفکر تغییر شکل ساختار این صنعت مطابق با روند افزایش کارایی و رقابت در دیگر صنایع می باشد. لزوم حرکت در این مسیر به دلایل مختلفی چون سرمایه بر بودن، نا کارآیی اقتصادی ساختار سنتی و انحصاری بودن آن غیر قابل انکار می باشد. تحقیق حاضر ضمن ارائه ی یکی از مصادیق این تجدید ساختار(نقش نیروگاه مجازی در بهره برداری از سیستم قدرت) نتایج حاصل از حضور آن در بازار برق را مورد بررسی قرار خواهد داد. در این فصل به معرفی اهداف کلی طرح و محتویات فصلهای آینده پرداخته خواهد شد.

1-2 بازار برق

صنعت برق به عنوان یک صنعت زیر بنایی در دو دهه اخیر دستخوش تغییرات بنیادی گردیده است که از آن به عناوین مختلفی چون تجدید ساختار، مقررات زدایی و . . .   یاد می‌شود. در ساختار جدید بر خلاف ساختار سنتی قدیم که در آن مالک سیستم تولید، انتقال و توزیع یکی بوده و تحت مالکیت واحد بهره ‌برداری می گردید، سیستم های تولید، انتقال و توزیع از یکدیگر مجزا شده و به صورت مستقل اداره می‌شوند.

بهره­وری پایین سیستم قدرت سنتی در تامین انرژی الکتریکی باعث گردید تا همانند صنایع هوایی و مخابرات از راه دور، تجدید ساختار در صنعت برق مطرح گردد. رقابت و دسترسی آزاد به سیستم انتقال دو موضوع اساسی در تجدید ساختار صنعت برق به شمار می رود. خصوصی­سازی و تغییر ساختارهای موجود در جهت ایجاد رقابت بیشتر و دسترسی آزاد و بدون تبعیض تولید­کنندگان مختلف به سیستم انتقال می­باشد. در این شرایط راهبری و طراحی هر یک از این بخش ها با توجه به فضای حاکم، نیازمندی ها و ارتباط با دیگر نهادها صورت می گیرد و سیستم توزیع برق به عنوان آخرین زنجیره برق رسانی می تواند به شکل های مختلفی باشد.

1-3 مفهوم نیروگاه مجازی(VPP)

یکی از دستاوردهای آینده تغییر ساختار، ایجاد فضای رقابتی در بخش تولید برق بوده است که در این خصوص مجموعه ای از واحدهای تولید مقیاس کوچک به همراه بار و شبکه تحت پوشش که توسط یک نهاد معین اداره می شود به نیروگاه مجازی موصوف است که می توانند در بازار عمده فروشی انرژی و ذخیره چرخان حضور فعال داشته باشند.

ایده به کارگیری نیروگاه مجازی به عنوان یکی از اجزای اصلی تشکیل دهنده سیستم قدرت در این تحقیق بررسی و تشریح می شود. این ایده برای سیستم های قدرت غیر متمرکز که متشکل از منابع تولید پراکنده می باشد، امکان بهره برداری بهینه مجموعه ای از منابع تولید پراکنده با بازده بالا و همچنین امکان حضور آنها را در بازار برق فراهم می سازد. بهره برداری از منابع تولید پراکنده موجب شده است تا ساختار متمرکز مدیریت مجموعه سیستم قدرت، تمایل به غیر متمرکز شدن مراکز مدیریت انرژی داشته باشد.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق گرایش قدرت

با عنوان :اینورتر و روش¬های کلیدزنی

 

تکه هایی از متن به عنوان نمونه :

 

فصل اول

اینورتر و روش­های کلیدزنی

 

در این فصل از پایان نامه ابتدا مشخصه کنترلی نیمه هادی قدرت و کلیدزنی در مبدل­های dc به ac   مورد بررسی قرار گرفته و بعد از آن روش کنترل جریان در محدوده­ی هیسترزیس و انواع تولید پراکنده صحبت خواهد شد.

1-1– تاریخچه

با توسعه روز افزون شبکه­های قدرت در دنیا مباحثی از قبیل تبدیل انرژی، انرژی­های نوین،
کاربرد­های مختلف سیستم­های ساخت بشر و ارتباط این موارد با هم باعث شده تا موضوع مهندسی قدرت به عنوان یکی از شاخه­های بزرگ و برجسته در میان دریای علوم خود را تجلی کند. امروزه در اکثر جاهایی از دنیا که تمدنی وجود داشته باشد می­توان نفوذ شبکه­های قدرت را مشاهده نمود. در سال 1948 اولین انقلاب الکترونیکی با اختراع ترانزیستور سیلیکونی به وقوع پیوست. بیشتر تکنولوژی­های الکترونیکی پیشرفته امروزی نتیجه آن اختراع است. با گذشت سالها میکروالکترونیک مدرن از نیمه هادی سیلیکونی تکامل پیدا کرد و اختراعات بزرگ بعدی نیز به­دنبال آن در دنیای الکترونیک قدرت صورت گرفت. اما با ساخت تریستور­های تجاری توسط شرکت جنرال الکتریک دومین انقلاب در الکترونیک قدرت صورت گرفت و دور جدیدی در آن به وقوع پیوست و از آن موقع به بعد انواع مختلفی از نیمه­­هادی­های قدرت پدید آمد. این انقلاب باعث گردید که توان­های خیلی زیاد را با بازده بالا کنترل کرده و تغییر شکل دهیم. در سایه همبستگی میکروالکترونیک و الکترونیک قدرت، بسیاری از کاربرد­های بالقوه الکترونیک قدرت در حال شکوفا شدن هستند و این روند ادامه خواهد یافت.

مباحث الکترونیک قدرت یکی از مهمترین شاخه­های این علم می­باشد. ادوات الکترونیک قدرت امروزه در انواع مختلف و برای کاربرد­های گوناگون ساخته شده­اند. از آن جمله می­توان به یکسو­سازها،
تنظیم­کننده­هاAC /AC ، چاپرها، اینورتر­ها، منابع تغذیه وغیره اشاره کرد. از این بین اینورتر­ها به عنوان یکی از مهمترین و پرکاربردترین ادوات مورد نظر می­باشد.

1-2- مشخصه­ کنترلی نیمه هادی­ها و مدارهای الکترونیک قدرت

با استفاده از مشخصه­ی کنترل عناصر نیمه­ هادی قدرت، می­توان با اعمال سیگنالهای کنترل به سر گیت تریستور­ها(به سر بیس ترانزیستور­های دو قطبی) می­توان آن­ها را بصورت یک کلید بکار گرفت. خروجی مطلوب با تغییر زمان هدایت این عناصر بدست می­آیند. هنگامی که یک عنصر نیمه هادی در حال هدایت است، افت ولتاژ کوچکی دو سر عنصر اتفاق می­افتد، که این افت قابل چشم پوشی می­باشد.              حال با توجه به مشخصه کنترلی نیمه­هادی­ها، جهت کنترل توان الکتریکی یا تغییر توان، تبدیل توان الکتریکی از یک شکل به شکل دیگر استفاده می­گردد و مشخصات کلیدزنی عناصر قدرت اجازه چنین تبدیلاتی را می­دهد. مبدل­های استاتیک قدرت این تبدیلات توان را انجام می­دهند.                             یک مبدل را می­توان به عنوان یک آرایه کلیدزنی در نظر گرفت. مدار­های الکترونیک قدرت را
می­توان در شش گروه طبقه­بندی کرد

  • کلید­های استاتیک
  • مبدل­های ac به dc ( یکسوسازهای کنترل­شونده)
  • مبدل­های acبهac ( کنترل­کننده­­های ولتاژ ac )
  • مبدل­های dc به dc( چاپر­های dc)
  • مبدل­هایdc به ac( اینورتر)
  • یکسوساز­های دیودی

علی رغم این موارد ذکر شده در بالا هر کدام خود دارای بحث تخصصی جداگانه می­باشند. اما با توجه به موضوع این پایان نامه فقط به بررسی مبدل­های dc به ac (اینورتر­ها) پرداخته می­شود.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

پایان‌نامه کارشناسی ارشد در رشته مهندسی برق- قدرت

 

 

 

آنالیز احتمالی پایداری دینامیک میکروگرید ها با در نظر گرفتن توربین های بادی

 

 

 

 

 

استاد راهنما

دکتر مهدی رئوفت

 

 

اسفند

1392

تکه هایی از متن به عنوان نمونه :

چکیده

 

 

آنالیز احتمالی پایداری دینامیک میکروگرید ها با در نظر گرفتن توربین های بادی

 

 

به کوشش

اصلان مجلل

 

 

در سال های اخیر نفوذ بالای منابع انرژی تجدید پذیر و مشخصا انرژی باد در شبکه های قدرت مسائل جدیدی را به وجود آورده است. یکی از مهمترین این مسائل، عدم قطعیت در توان تولیدی توسط توربین های بادی است. عدم قطعیت ایجاد شده توسط انرژی باد در ریزشبکه ها که سطح توان و ولتاژ پایین تری دارند می‌تواند بسیار تاثیر گذارتر باشد. این موضوع نیاز به انجام آنالیز احتمالی در ریزشبکه هایی که از انرژی باد برای تولید توان استفاده می‌کنند را مشخص می‌سازد. در این پایان نامه، پایداری سیگنال کوچک ریزشبکه ها تحت تاثیر عدم قطعیت تولیدی توسط انرژی باد مورد مطالعه قرار خواهد گرفت. بدین منظور روش های مونت-کارلو و کوانتایز به عنوان روش های عددی و روش تخمین دو نقطه ای و روش مبتنی بر بسط گرم-چارلیر به عنوان روش های آنالیز احتمالی عددی مورد استفاده قرار می‌گیرند. مزایا و معایب این روش ها مورد مطالعه قرار خواهد گرفت. به منظور کامل شدن مطالعات در این زمینه، دینامیک توربین های بادی نیز در این پایان نامه مورد بررسی قرار خواهد گرفت. برای دستیابی به این هدف، سه نوع توربین بادی مرسوم در سیستم های قدرت به طور کامل مدل سازی شده و تاثیر دینامیک آنها بر روی احتمال ناپایداری سیستم مورد ارزیابی قرار می‌گیرد. همچنین برای به دست آوردن معادلات حالت سیستم، از روشی مخصوص ریزشبکه ها استفاده خواهد شد که انعطاف پذیری زیادی را برای مدل سازی اجزای جدید فراهم می کند.

 

کلمات کلیدی:

پایداری سیگنال کوچک، آنالیز احتمالی، ریزشبکه، عدم قطعیت، انرژی باد

فصل اول

 

 

 

مقدمه

 

 

1-1.       انرژی بادی

  • مروری بر انرژی باد

تاثیر منفی و غیر قابل اغماض سوزاندن سوخت های فسیلی[1] بر روی آب وهوای جهان در سالهای اخیر به شدت مورد توجه قرار گرفته است. کاهش تاثیرات منفی این تغییرات آب وهوایی نیازمند کاهش بسیار زیاد در تولید گازهای گلخانه[2] ای است که می تواند از طریق کاهش سوزاندن سوختهای فسیلی میسر شود. بر اساس تخمین ها تا سال 2050 کاهش60 الی 80 درصدی این گازها ضروریست [1]. به همین دلیل در بسیاری از کشورها استفاده از منابع تولید انرژی ای که علی رغم داشتن ضریب اطمینان بالا، کربن مونو اکسید کمی تولید کنند و از لحاظ اقتصادی به صرفه باشند تبدیل به یکی از مهمترین اهداف سیاستگذاران در زمینه انرژی شده است.

بدین منظور استفاده از منابع انرژی تجدید پذیر[3] در دستور کار دولتها قرار گرفته است به طوری که در سال 2012 میزان ظرفیت تولید توان از کلیه منابع تجدید پذیر از مرز 1.470 گیگاوات گذشت. این میزان ظرفیت تولید[4] معادل 26% ظرفیت تولید جهانی و 21.7% توان تولید شده در همین سال است [2]. در این میان انرژی باد[5] یکی از سریعترین نرخهای رشد را نسبت به سایر منابع انرژی تجدید پذیر داشته است. به طوریکه در سال 2012 میزان ظرفیت تولید توان از انرژی باد به 282 گیگاوات رسیده است [3].

شکل 1-1- ظرفیت تجمعی انرژی باد جهان

در شکل 1-1، نمودار “Reference”بر اساس گزارش دور نمای انرژی جهان در سال 2004 از آژانس بین المللی انرژی[6] استوار است , سناریوی “Moderate” بیانگر شرایطی است که تمام اقدامات سیاسی لازم برای حمایت از انرژی های تجدیدپذیر (در دست احداث و یا در حال برنامه ریزی) صورت گیرد و در سناریوی “Advanced” فرض بر این است که تمام راهکارهای سیاسی به نفع تولید و گسترش استفاده از انرژی باد باشد. با بررسی شکل 1-1 که پیش بینی میزان ظرفیت توان باد تولیدی در سال 2004 را نشان میدهد و مقایسه آن با مقادیر واقعی ظرفیت توان باد در سال 2012 به وضوح می توان ملاحظه کرد که بهترین و خوشبینانه ترین پیشبینی ها در مورد آینده انرژی های باد بسیار با واقعیت فاصله دارند [4]. بنابراین می توان به این نتیجه رسید که در سالهای آینده انرژی باد تبدیل به یکی از موثرترین و پرکاربردترین منابع انرژی جهان خواهد شد.

شکل 1-2- اطلس سرعت باد جهان در ارتفاع 80 متری برای سال 2005

از آنجایی که میزان توان تولیدی توسط توربینهای بادی بسیار به سرعت باد وابسته است سعی بر آن است که مکان نیروگاههای بادی در مناطق با سرعت باد نسبتا زیاد انتخاب شود. شکل 1-2 نمونه ای از اطلس بادی که می تواند برای این منظور مورد استفاده قرار گیرد را نشان می دهد. در این شکل سرعت باد در مناطق مختلف جهان در ارتفاع 80 متری از سطح زمین نشان داده شده است. به علاوه شکل 1-3 اطلس باد ایران در ارتفاع 80 متری از سطح زمین را نشان می دهد. مطابق این شکل ایران از پتانسیل و توانایی بالایی برای بهره برداری از انرژی باد برخوردار است [5].

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

پایان نامه کارشناسی ارشد در رشته مهندسی برق (گرایش قدرت)

 

بررسی حالات گذرای الکترومغناطیسی درتوربین های بادی

 

 

 

 

 

استاد راهنما:

دکتر محمد محمدی

 

 

 

 

 

 

اسفند ماه 92

 

تکه هایی از متن به عنوان نمونه :

چکیده

بررسی حالات گذرای الکترومغناطیسی در توربین­های بادی

به کوشش

حمید صمصامی

 

با توسعه روز­افزون توربین­های بادی، بالا بردن کارآیی آن حیاتی تر شده است. یکی از فاکتور­ها برای سنجش کارآیی توربین بادی، عملکرد آن در قبال مسائل حالت گذرا است. پدیده هایی که منجر به ایجاد حالات گذرای الکترومغناطیسی بر روی مزرعه بادی می شوند، به دو مقوله صاعقه و کلید­زنی تقسیم بندی شده است، که هر کدام به دو زیر ­شاخه تقسیم شده­اند: مطالعات درون سیستم و مطالعات درون شبکه ای. در بخش صاعقه، مواردی از جمله میزان تاثیر­پذیری مبدل ها از صاعقه، نقش سیستم زمین در اضافه ولتاژ­ها، تاثیر ارتفاع توربین بر اضافه ولتاژ­ها، تاثیر وجود هر یک از برقگیر­ها بر کاهش اضافه ولتاژ­ها، تاثیر طراحی مزرعه (وجود یا عدم وجود ترانسفورماتور­های افزاینده) بر اضافه ولتاژ­ها، برخورد صاعقه به خط انتقال متصل به مزرعه و تاثیر آن بر توربین ها و برخورد صاعقه به ناسل توربین مورد بحث و بررسی قرار گرفته است.

در بخش کلید­زنی، عوامل اصلی کلید­زنی در دو حوزه بررسی شده است: کلید­زنی بر روی سیستم DFIG و کلید­زنی بر روی شبکه. از جمله عامل­های کلید­زنی بر روی سیستم DFIG می توان به سنکرون کردن توربین ها با شبکه، بی برق کردن توربین ها، وصل بانک های خازنی و بروز خطا­های ناخواسته بر روی مبدل­ها اشاره کرد. در حوزه کلید­زنی بر روی شبکه تنها به قطع و وصل خطوط اشاره شده است.

برای رسیدن به این اهداف، این پایان­نامه در پنج فصل تدوین شده است. در فصل اول مقدمه ای اجمالی بر توربین­های بادی شامل معرفی انواع تقسیم بندی­های توربین­ها و همچنین معرفی اجزای یک توربین بیان شده است. حالت­های گذرای ممکن در یک DFIG در فصل دوم گنجانده شده است که شامل دو حوزه صاعقه و سوییچینگ می شود. فصل سوم به مدل سازی توربین بادی با ژنراتور DFIG پرداخته است. نتایج شبیه سازی که بوسیله مدل ارائه شده در فصل سوم بدست آمده است، در فصل چهارم گنجانده شده است و در انتها، نتیجه گیری و ارائه پیشنهادات جهت مطالعات آتی در فصل پنجم شرح داده شده است.

 

فصل اول

مقدمه ای بر توربین­های بادی

 

 

1-1- مقدمه

 

آنچه اکنون به عنوان یکی از بزرگترین مشکلات جهانی، بشر را تهدید می کند، کمبود انرژی و آلودگی هوا بر اثر استفاده از سوخت های فسیلی است. برای رفع این معضل بزرگ، از مدت ها پیش پژوهشگران و دانشمندان، مطالعه و تحقیق برای استفاده از انرژی های تجدید­پذیر و پاک را شروع کرده اند. از گذشته های نه چندان دور، راه حل هایی برای تولید انرژی از منابع طبیعی مورد مطالعه قرار گرفته و عناصری مانند آفتاب، آب، باد و امواج اقیانوس ها مورد توجه قرار گرفته است و دانشمندان می کوشند با استفاده از این عناصر طبیعی، مشکل انرژی را حل کنند که پی آمد آن، کاهش آلودگی هوا و محیط زیست سالم خواهد بود. استفاده از قایق ها و کشتی های بادبانی و آسیاب های بادی و آبی، استفاده وسیع از انرژی آفتاب در مقاصد گرمایش و سوزاندن چوب و امثال آن برای تولید حرارت، تعبیه باد­گیر های طبیعی برای سرمایش اماکن مسکونی و بسیاری موارد دیگر از جمله مثال های بارز استفاده انسان از منابع انرژی طبیعی می باشد.

با گذشت زمان و در اثر رشد جوامع و پیچیده تر شدن صنعت و تکنولوژی، نیاز بشر به منابع انرژی شدت یافت و کشف و بهره برداری وسیع منابع فسیلی را ناگزیر نمود. در دنیای امروز، انفجار جمعیت و ارتقاء سطح زندگی و رفاه انسان ها که نیاز به منابع انرژی را بیش از پیش شدت بخشیده است از یک طرف، و آسیب ها و تهدیدات روزافزونی که استفاده بی رویه از انرژی های فسیلی به طبیعت و محیط زیست وارد کرده و می کند از طرف دیگر، ادامه این روند را غیر ممکن ساخته است. لذا، بشر با نگاهی دوباره به خورشید، باد و سایر منابع طبیعی پاک و لایزال، سعی نموده است که وابستگی خود به منابع فسیلی را تا حد امکان کم نماید. یکی از ارزان­ترین و سهل الوصول ترین آنها انرژی باد است [1]. بررسی میزان استفاده از این انرژی در سال­های اخیر به خوبی گویای اهمیت و جایگاه آن در تامین انرژی در سطح جهان می باشد..

  • مزایای بهره برداری از انرژی باد

انرژی باد نیز مانند سایر منابع انرژی تجدید­پذیر، از ویژگی ها و مزایای بالایی نسبت به سایر منابع انرژی برخوردار است که اهم این مزایا عبارتند از:

  • عدم نیاز توربین های بادی به سوخت، که در نتیجه از میزان مصرف سوخت های فسیلی می­کاهد.
  • رایگان بودن انرژی باد
  • توانایی تامین بخشی از تقاضا­های انرژی برق
  • کمتر بودن هزینه های جاری و هزینه های سرمایه گذاری انرژی باد در بلند مدت
  • تنوع بخشیدن به منابع انرژی و ایجاد سیستم پایدار انرژی
  • قدرت مانور زیاد جهت بهره برداری در هر ظرفیت و اندازه (از چند وات تا چندین مگاوات)
  • عدم نیاز به زمین زیاد برای نصب
  • نداشتن آلودگی محیط زیست نسبت به سوخت های فسیلی

 

 

 

1-2- توربین های بادی

 

یک توربین بادی دستگاهی است که دارای تعدادی پره می باشد که این پره ها، قابلیت دریافت انرژی از باد و تبدیل آن به انرژی مکانیکی را دارا می باشند. این انرژی مکانیکی به یک ماشین الکتریکی منتقل می شود و انرژی الکتریکی تولید می شود.

1-2-1- معرفی اجزای توربین بادی:

یک توربین بادی به طور کلی از قسمت هایی مانند روتور، جعبه دنده، محور سرعت پایین، محور سرعت بالا، ژنراتور، برج نگه داری سیستم روتور، مکانیزم های ترمز و مکانیزم های انحراف توربین، بادنما، باد سنج و بدنه توربین تشکیل شده است. شکل (1-1) شمای کلی اجزای یک توربین بادی را نمایش می دهد.

شکل 1-1- اجزای توربین بادی

در زیر پاره ای از اجزای نشان داده شده در شکل (1-1) شرح داده شده است:

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

در رشته مهندسی برق – گرایش قدرت
عنوان:
برنامه ریزی تعمیر و نگهداری واحد های تولیدی مبتنی بر پیشنهاد خرید به منظور حفظ کفایت سیستم

 

 

 
استاد راهنما:
دکتر مهدی حسینی

 

 

 

 

1393
تکه هایی از متن به عنوان نمونه :

چکیده

در این پایان نامه، روشی جدید برای برنامه­ریزی نگهداری و تعمیر واحدهای تولیدی در محیط­های تجدید ساختار شده ارائه شده است. در محیط سنتی با ساختار عمودی، بهره­بردار سیستم برنامه­ی تعمیر و نگهداری را برای حفظ قابلیت اطمینان تعیین می کند و همچنین سعی بر کاهش هزینه ها دارد. اما چنین رویه­ای در یک محیط رقابتی قابل قبول نمی­باشد. در محیط تجدید ساختار شده، بهره­بردار همچنان متصدی حفظ قابلیت اطمینان در سطح مطلوب می­باشد. در حالیکه هدف هر تولیدکننده افزایش سود خودش می­باشد، که این ممکن است با هدف حفظ قابلیت اطمینان در تضاد باشد. در این پایان نامه، برای برنامه­ریزی تعمیر و نگهداری، روشی چندمرحله­ای پیشنهاد شده است. در مرحله­ی اول، تولیدکنندگان با توجه به ارزیابی هزینه/فایده، پیشنهاد خرید تعمیر و نگهداری مربوط به واحد تولیدی مدنظرشان را تهیه و به بهره­بردار مستقل سیستم ارائه می­دهند. در مرحله­ی دوم، بهره­بردار مستقل سیستم با توجه به پیشنهادات ارسال­شده از سوی تولیدکنندگان و همچنین کفایت سیستم، زمان­بندی خروج واحدهای تولیدی را با هدف بیشینه کردن رضایت تولیدکنندگان و حفظ کفایت سیستم تعیین می­کند. در مرحله­ی سوم، با توجه به خصوصیت غیرانتفاعی بهره­بردار مستقل سیستم، یک راهکار بی­طرفانه برای تسویه­ی بازار پیشنهاد شده است.

 

واژه‌های کلیدی: برنامه­ریزی تعمیر و نگهداری پیشنهادمحور، برنامه­ریزی سیستم­های قدرت، قابلیت اطمینان، تجدید ساختار.

 

 

 

 

 

 

فصل اول

مقدمه

 

 

 

 

 

 

1-1- تعریف تعمیر و نگهداری[1]

تعمیر و نگهداری عملیاتی است که در آن یک وسیله، در بازه­ای معین، مورد ترمیم قرار می­گیرد. تعمیر و نگهداری برای جلوگیری، کاهش یا رفع زوال آن وسیله می­باشد.

هدف از تعمیر و نگهداری توسعه دادن طول عمر تجهیزات یا افزایش زمان متوسط تا خرابی بعدی می­باشد. گذشته از این، انتظار می­رود که سیاست­های موثر تعمیر و نگهداری بتواند فرکانس وقفه­ی[2] خدمات و بسیاری از نتایج نامطلوب آن وقفه­ها را کاهش دهد. تعمیر و نگهداری به صورت واضحی بر روی قابلیت اطمینان[3] اجزا و کل سیستم اثر می­گذارد. کم­توجهی به تعمیر و نگهداری باعث تعداد زیادی خرابی پرهزینه و کارایی ضعیف سیستم می­شود و بنابراین قابلیت اطمینان تنزل پیدا می­کند. توجه بیش از حد به تعمیر و نگهداری گرچه قابلیت اطمینان را افزایش می­دهد، ولی هزینه­ی آن را نیز به شدت افزایش می­دهد. در یک برنامه­ریزی موثر تعمیر و نگهداری باید بین هزینه و قابلیت اطمینان تعادل برقرار کرد [2].

در استانداردهای موجود برای سیستم قدرت، تعمیر و نگهداری تجهیزات الکتریکی این­چنین تعریف شده است:

“تعمیر و نگهداری، حفظ و نگهداری شرایط لازم برای بهره­برداری از تجهیزات الکتریکی در جهتی است که به کار گرفته شده است” [3].

بنابراین، تعمیر و نگهداری تضمین می­کند که سیستم در زمینه­ای که برای کار کردن در آن طراحی شده است، از نظر الکتریکی در شرایط امنی کار کند.

در حالت کلی، تعمیر و نگهداری به دو گروه اصلی تعمیر و نگهداری پیشگیرانه[4] و تعمیر و نگهداری اصلاحی[5] تقسیم­بندی می­شود. تعمیر و نگهداری پیشگیرانه به منظور حفظ صحت عملکرد سیستم و تامین قابلیت اطمینان مورد نیاز صورت می­گیرد. برای این منظور عملیات منظمی از قبیل بازرسی عملکرد سیستم، تمیزکاری، تنظیم، روغنکاری و نظایر آن اجرا می­شود و قطعاتی که در شروع مرحله­ی فرسایش می­باشند و یا به عنوان قطعه مازاد موازی از کار افتاده­اند، توسط قطعات نو و سالم جایگزین می­شوند. هدف از این عملیات، محافظت سیستم در اجتناب از وقوع از کار افتادن بیش از حدود مطلوب است. تعمیر و نگهداری اصلاحی در صورت وقوع هرگونه نقصان در عملکردهای سیستم انجام می­گیرد و هدف از اجرای آن بازگرداندن سریع سیستم به شرایط مطلوب برای عملکرد کامل است. این کار با تعویض، تعمیر و یا تنظیم قطعاتی که موجب توقف سیستم شده­اند، صورت می­گیرد [4].

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

مقطع کارشناسی ارشد

رشته : مهندسی برق – قدرت
عنوان :

بهره‌برداری بهینه از ترانسفورماتورهای قدرت مبتنی به مفاهیم قابلیت اطمینان
استاد راهنما : جناب آقای دکتر تقی بار فروشی

استاد مشاور : جناب آقای دکتر ایرج احمدی

(زمستان 1392)

تکه هایی از متن به عنوان نمونه :

چکیده

ترانسفورماتور یکی از مهم‌ترین اجزا سیستم قدرت بوده و به علت گران‌قیمت بودن و اهمیت عملکرد ترانسفورماتور در سیستم قدرت و زمان‌بر بودن جایگزینی آن، فرایند بررسی و انتخاب روش بهره‌برداری بهینه و مطلوب برای ترانسفورماتورها با در نظر گرفتن مسائل اقتصادی و قابلیت اطمینان همواره از مهم‌ترین و ضروری‌ترین مسائل سیستم‌های قدرت بوده است. از این‌رو در این پایان‌نامه یک روش جدید احتمالی برای تعیین محدوده بهره‌برداری اقتصادی ترانسفورماتور ارائه شده است. ایده اصلی این پایان‌نامه بر خروج عمدی یکی از ترانسفورماتورهای موازی پست‌های فوق توزیع یا انتقال و قرار دادن آن در وضعیت آماده به کار استوار بوده و شامل پنج مرحله اصلی است: 1) محاسبه دسترس‌پذیری و عدم دسترس‌پذیری بر اساس مدل مارکوف و تبدیل آن به شاخص اقتصادی با استفاده از مفهوم انرژی انتظاری تأمین نشده؛ 2) محاسبه مجموع تلفات بی‌باری و مسی ترانسفورماتور بر اساس اطلاعات بارگذاری و تبدیل آن به شاخص اقتصادی؛ 3) تعیین یک نقطه بار بحرانی برای پست و تعیین محدوده‌‌ی اقتصادی بهره‌برداری بر اساس مراحل 1 و 2. 4) بررسی اثر روش جدید بهره‌برداری بر عمر متوسط ترانسفورماتور. 5) محاسبه قابلیت اطمینان سیستم در دوره فرسایش با استفاده از مدل حرارتی و رابطهٔ تسریع فرسودگی و استفاده از تابع توزیع نرمال. به منظور مطالعه موردی، شبیه‌سازی‌های لازم بر اساس اطلاعات واقعی یکی از پست‌های 63/230 کیلوولت شبکه برق ایران انجام گردیده است. نتایج مطالعه موردی حاکی از کارایی روش پیشنهادی جدید می‌باشد. بطوریکه باعث صرفه‌جویی اقتصادی، افزایش چشمگیر عمر متوسط ترانسفورماتورها و افزایش فرصت تعمیرات پیشگیرانه خواهد شد. همچنین از شبیه‌سازی‌های انجام شده در این پایان‌نامه می‌توان برای پایش قابلیت اطمینان و عمر باقیمانده ترانسفورماتور به صورت بر خط        (On-line) استفاده نمود.
واژه‌های کلیدی:

ترانسفورماتورهای قدرت، بهره‌برداری بهینه، مفاهیم قابلیت اطمینان، انرژی انتظاری تأمین نشده، تلفات توان ترانسفورماتور، خروج عمدی، فرسایش ترانسفورماتور

 

فصل اول

 

مقدمه

 

 

 

 

 

 

 

 

 

 

پیشگفتار
ترانسفورماتورها از اصلی‌ترین تجهیزات شبکه قدرت جهت تأمین انرژی مشترکین به شمار می روند. با توجه به هزینه‌ی بسیار زیاد تعمیرات و نگهداری ترانسفورماتورهای قدرت و از آنجاییکه تعمیر، تهیه و نصب آن‌ها در صورت خرابی مستلزم صرف زمان طولانی است، رخ دادن خطا و ایجاد خرابی در ترانسفورماتورها باعث قطع طولانی مدت انرژی و متعاقب آن کاهش فروش انرژی و درآمد شرکت‌های برق می‌گردد. از این‌رو بهره‌برداری بهینه از ترانسفورماتورها جهت کاهش هزینه و میزان خرابی آن‌‌ها، از جمله مسائلی است که در حال حاضر پیش‌روی شرکت‌های مدیریت و بهره‌برداری شبکه‌های قدرت در بسیاری از کشورهای دنیا قرار دارد.

تاکنون مطالعات بسیاری در زمینه‌ی بهره‌برداری اقتصادی و بهینه از ترانسفورماتورهای قدرت مبتنی بر دیدگاه‌های متفاوتی انجام شده است. از آن جمله می‌توان به بهره‌برداری اقتصادی از ترانسفورماتورهای قدرت مبتنی بر توان کل و توان راکتیو، مشخصات و پارامترهای فنی ترانسفورماتورها، بهبود ضریب بار، جابجایی بارو … اشاره نمود]7[. این در حالی است که مطالعات و تحقیقات چندانی در زمینه بهره‌برداری اقتصادی ترانسفورماتورهای قدرت با در نظر گرفتن شاخص‌های قابلیت اطمینان صورت نگرفته است. از طرفی در اندک تحقیقات انجام شده، اثر متقابل عوامل تاثیرگذار بر شاخص‌های قابلیت اطمینان و در نهایت اثر تجمعی آنها بر بهره‌برداری بهینه از ترانسفورماتور دیده نشده است.

نکته‌ی چالش بر انگیز در این خصوص اینست که توجه بیش از حد به قابلیت اطمینان باعث هدر رفتن بودجه و سرمایه و افزایش هزینه‌ها خواهد شد و در مقابل توجه نامعقول و غیر منطقی به مسائل اقتصادی و تلاش برای کاهش هزینه بهره‌برداری بدون در نظر گرفتن شاخص‌های قابلیت اطمینان، سیستم را در ناحیه ریسک و خطر قرار خواهد داد، به همین دلیل ایجاد مصالحه و تعادل بین هزینه‌های بهره‌برداری و شاخص‌های قابلیت اطمینان همواره از مهم‌ترین و پیچیده‌ترین مسائل در مطالعات سیستم‌های قدرت بوده است. از این‌رو مهم‌ترین اصل جهت سیاست‌گذاری در بهره‌برداری بهینه از ترانسفورماتورهای پست‌های فوق توزیع و انتقال مبتنی بر مفاهیم قابلیت اطمینان، یافتن تعادل مناسبی بین هزینه‌ها و قابلیت اطمینان می‌باشد.

از طرفی با توجه به تأثیر تغییر روش بارگذاری ترانسفورماتورها بر عمر آن‌ها، تخمین طول عمر باقیمانده ترانسفورماتورهای قدرت در هر لحظه با حفظ سطح قابل قبولی از قابلیت اطمینان، از دغدغه‌های اصلی اغلب دارندگان این تجهیزات، مخصوصاً در مواقعی که ترانسفورماتور در شرایط اضافه بار پیوسته و دوره‌ای قرار می‌گیرد، می‌باشد.

از عوامل مهم در تعیین عمر متوسط ترانسفورمرها در محدوده ترانسفورمرهای قدرت، فوق توزیع و توزیع، توجه به مسائل عایقی این تجهیزات می‌باشد. عوامل مختلفی در این زمینه وجود دارند که می‌توانند هر یک بر عمر عایقی ترانسفورمر اثرگذار باشند.

زوال عایق تابعی از دمای کار، رطوبت و اکسیژن موجود در عایق می‌باشد. امروزه با سیستم‌های مدرن فرآوری و نگهداری روغن و عایق‌های دیگر ترانسفورمر، اکسیژن و رطوبت عایق‌ها حداقل شده است، از آنجا که توزیع دما در ترانسفورمر یکنواخت نیست، تحقیقات روی تعیین داغ‌ترین نقطه ترانسفورمر (اصطلاحاً نقطه داغ) متمرکز شده است و از آن به عنوان عامل اصلی تعیین فرسایش عایقی یاد می‌شود.

حد بارگذاری ترانسفورمر به صورت جداولی در استانداردهای IEEE به شماره‌های C57.91-1981، C57.92-1982 و C57.115-1991 ارائه شده است. اما در استاندارد C57.91-1995 مربوط به بارگذاری ترانسفورمرهای روغنی، این جداول حذف شده‌اند و به جای آن‌ها مدل انتقال حرارتی ارائه شده است که کاربر می‌تواند بر مبنای روابط حالت گذرای آن و با استفاده از مشخصات حرارتی ترانسفورمر مورد نظر به دست آمده از آزمایش، دمای نقطه داغ را تعیین کند. برای تعیین دمای نقطه داغ در این مدل حرارتی، بارگذاری وارد روابط می‌شود. از این رو بارگذاری یکی از موارد تأثیرگذار روی دماهای ترانسفورمر مخصوصاً دمای نقطه داغ می‌باشد.

از طرفی تا زمانی که ترانسفورمر به محدوده عمر متوسط وارد نشده صرفاً خرابی‌های اتفاقی اجزاء در دوره عمر مفید در تعیین قابلیت اطمینان نقش دارند [8]. ولی در زمان ورود ترانسفورمر به محدوده عمر متوسط، فرسایش نیز روی قابلیت اطمینان ترانسفورمر تأثیرگذار خواهد بود. مهم‌ترین عامل در تعیین قابلیت اطمینان در مرحله فرسایش، عمر متوسط ترانسفورمر می‌باشد [8،9]. همان طور که ذکر شد عمر متوسط ترانسفورمر متأثر از دمای نقطه داغ و در نتیجه بارگذاری می‌باشد.
هدف تحقیق
ارزیابی دسترس‌پذیری و قابلیت اطمینان پست دارای دو ترانسفورماتور موازی در یک دوره بهره‌برداری بلندمدت و معین با اعمال روش پیشنهادی با فرض خروج عمدی یک ترانسفورماتور آن و قرار دادن آن در حالت آماده به کار.
محاسبه مجموع تلفات ترانسفورماتورها و انرژی انتظاری تأمین نشده[1] و تبدیل آن‌ها به شاخص‌های اقتصادی و مقایسه دو روش بهره‌برداری متداول و روش جدید پیشنهادی با رویکرد حداقل نمودن هزینه کل بهره‌برداری از ترانسفورماتور در افق زمانی معین.
بررسی تأثیر روش جدید بهره‌برداری بر طول عمر ترانسفورماتورها و تخمین طول عمر باقیمانده آن‌ها و همچنین قابلیت اطمینان سیستم در دوره فرسایش.
در این پایان‌نامه با مطالعه موردی روی یکی از پست‌های انتقال کشور نشان داده خواهد شد که بهره‌برداری از ترانسفورماتورهای موازی یک پست بر اساس روش جدید پیشنهادی در این تحقیق چه تأثیری بر هزینه بهره‌برداری، قابلیت اطمینان، طول عمر و زمان شروع فرسایش ترانسفورماتورها خواهد داشت در حالی که تاکنون در هیچ پژوهشی این روش بهره‌برداری مطرح و مورد بررسی قرار نگرفته است.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

پایان‌نامه

مقطع کارشناسی ارشد

رشته :مهندسی برق گرایش قدرت

از الگوریتم های بهینه سازی مولد پالسی با استفاده تکاملی

استاد راهنما:دکتر عبدالرضا شیخ الاسلامی

استاد مشاور:مهندس محمد رضا نژاد

 

(زمستان 1392)

تکه هایی از متن به عنوان نمونه :

چکیده:

توان پالسی طرحی است برای تخلیه انرژی ذخیره شده الکتریکی بر روی بار در یک یا چند پالس کوتاه با نرخ تکرار قابل کنترل. فناوری تولید توان پالسی به دو شاخه پالسهای کم توان و پالسهای پر توان تقسیم می شود. پالسهای کم توان در حد چند مگا وات و پالسهای پرتوان دارای توانی در حد گیگا و تراوات یا بیشتر می باشد.

در این پایان نامه با هدف تولید شکل موج پالسی مورد نیاز برای تولید ورقهای فلزی از مولد مارکس تک قطبی با قطعات نیمه هادی استفاده شده؛ سپس با در مدار آوردن با تاخیر هر طبقه شکل موج مورد نیاز پالسی ساخته می شود. برای محاسبه زمان مناسب ورود هر طبقه به مدار الگوریتم ژنتیک به کار می رود.

با افزایش زمان، به دلیل افت ولتاژ خازنهای ذخیره کننده انرژی در مولد مارکس سطح پالس دچار افت و در نتیجه سبب خارج شدن شکل موج پالسی از حالت مورد نیاز می شود. برای از بین بردن این مشکل از جبران کننده فعال مدولاسیون عرض پالس استفاده می شود. به منظور کاهش هزینه و افزایش سادگی مدار در این پایان‌نامه طرح جدیدی برای جبران کننده فعال مدولاسیون عرض پالس ارائه شده‌ است؛ در این طرح منبع تغذیه کمکی حذف و تعدادی از خازنهای مولد مارکس به عنوان جبران کننده پالس اصلی استفاده می‌شود.

تمامی شبیه سازی ها در محیط سیمولینک[1] و محاسبات ریاضی مربوط به نمونه برداری از پالس خروجی و مقایسه آن با پالس الگو و بدست آوردن تابع خطا در محیط برنامه نویسی متلب[2] انجام می گیرد و نوار ابزار «گوست[3]» برای محاسبه زمان تاخیر سوییچ ها‌ی هر واحد استفاده می‌شود.

 

1-1مقدمه

توان پالسی طرحی است برای تخلیه انرژی ذخیره شده الکتریکی بر روی بار در یک پالس کوتاه یا پالسهایی کوتاه با نرخ تکرار قابل کنترل. فناوری تولید توان پالسی به دو شاخه پالسهای کم توان و پالسهای پر توان تقسیم می شود. پالسهای کم توان در حوزه مخابرات، الکترونیک سرعت بالا، اندازه گیری و پالسهای پرتوان دارای توانی در حد چند مگاوات یا بیشتر بوده ویژگی این پالسها در جدول زیر نشان داده شده است.

فناوری پالسهای پرقدرت ایده اصلی آن مبتنی بر جمع آوری انرژی از منابع عادی اولیه در سطوح پایین توان و چگالی توان اندک و در درمرحله بعد ذخیره سازی موقت آن انرژی است سپس انرژی به سرعت از منبع ذخیره موقت رها می شود و شکل پالسی می یابد. و در نهایت پس از فشرده سازی توان پالسی، انرژی الکتریکی با سطوح بالای توان و چگالی توان به بار انتقال می یابد.[1]

شکل 1-1 محدوده توان پالسی

شکل 1-2 شکل ظاهری پالس

علاوه بر توان و انرژی، پالسها با نوع شکل شان نیز شناسایی می شوند. مثلاً با زمان صعود، زمان افت، عرض پالس یا صافی سطح پالس. معمولاً عرض پالسها توان بالا بین چند نانو ثانیه تا چند میکروثانیه در نظر گرفته می شود.(شکل 1-1)

زمان صعود زمانی است که ولتاژ از 10% تا 90% اندازه نهایی افزایش می یابد. زمان افت نیز مدت زمان افت ولتاژ از 90% تا 10% است. زمان افت و صعود تا حدود زیادی به امپدانس بار بستگی دارد که با زمان معمولاً متغیر است. تعریف واحدی برای عرض پالس در منابع وجود ندارد اما برای برخی کاربردها بهتر است مدت زمانی که شکل موج حداقل 90% مقدار بیشینه را دارد تعریف گردد.

جدول ‏0‑1 محدوده توان پالسی

انرژی 10-107 ژول
توان 106 – 1014 وات
ولتاژ 103– 107 ولت
جریان 103 – 107 آمپر
چگالی جریان 106-1011 آمپر بر متر مربع
عرض پالس ثانیه
انرژی 10-107 ژول
توان 106 – 1014 وات
ولتاژ 103– 107 ولت
جریان 103 – 107 آمپر
چگالی جریان 106-1011 آمپر بر متر مربع
عرض پالس ثانیه

طرح توان پالس قابلیت شکل دهی پالس را علاوه بر چند برابر کنندگی توان دارا می باشد. مثلاً می توان زمان صعود و عرض پالس دلخواه را ایجاد کرد. برای بهینه سازی انتقال انرژی به بار تبدیل امپدانس ممکن است نیاز باشد. شکل 1-2 اجزای مولد پالس را نشان می دهند.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

پخش بار سری زمانی

 

 

 

استاد راهنما

دکتر حیدر صامت

 

 

 

اسفند ماه

1392

تکه هایی از متن به عنوان نمونه :

چکیده

 

پخش بار سری زمانی

 

به کوشش

مرتضی خورشیدسوار

 

در این تحقیق به کاربرد مدل­های سری زمانی در سیستم قدرت پرداخته شده است. سری­های زمانی برای مدلسازی پارامترهای مختلف شبکه قدرت و در کاربردهای متنوع به کار گرفته می­شود. این مدل­ها قادرند همبستگی زمانی متغیرهای شبکه قدرت را در نظر بگیرند. با توجه به مدلسازی بارها و تولیدات سیستم قدرت به صورت مدل سری زمانی، روش پخش باری بر اساس مدل­های سری زمانی پیشنهاد شده است. در روش پیشنهادی از مدل­های سری زمانی به صورت مستقیم در حل مسئله پخش بار، برای یافتن متغیرهای حالت شبکه استفاده می­شود. خروجی این روش مدل­های سری زمانی چند متغیره برای مجهولات شبکه است.

در ادامه از پخش بار سری زمانی معرفی شده در این پایان­نامه در مسئله تجدید ساختار شبکه­های توزیع و برای یافتن بهترین ساختار شبکه با هدف کمینه کردن تلفات در سیستم قدرت استفاده می­شود.

در انتها نیز از مدل­های سری زمانی معرفی شده در سال­های اخیر جهت شبیه سازی پارامترهای گسسته در سیستم قدرت استفاده شده است. سری­های زمانی مرسوم ARMA جهت مدلسازی داده­های پیوسته کاربرد دارند. متغیرهایی چون توان خروجی واحدهای تولید پراکنده CHP و وضعیت بانک­های خازنی در سیستم قدرت ماهیت گسسته دارند. این مدل­ها می­توانند برخی توابع توزیع گسسته را برای متغیرهای مختلف در نظر بگیرند.

 

کلمات کلیدی: پخش بار، سری­های زمانی، متغیرهای همبسته، تجدید ساختار شبکه­های توزیع، مدلسازی پارامترهای گسسته

 

1-    مقدمه

 

 

1-1- اهمیت مسئله

 

اولین و اصلی­ترین قدم در بهره­برداری، برنامه­ریزی و طراحی سیستم­های قدرت داشتن اطلاعات کافی از شرایط شبکه قدرت، شامل توان­های عبوری از خطوط و ولتاژ باس­ها در حالت دائمی است. داشتن چنین اطلاعاتی نیازمند انجام پخش بار در شبکه قدرت است. ضرورت انجام مطالعات پخش بار از دیر باز مورد توجه محققین بوده است، به طوری که همه ساله روش­ها و الگوهای جدیدی جهت بهبود روش­های موجود پخش بار ارائه می­گردد. روش­های مختلف پخش بار به صورت گسترده­ای برای مطالعات برنامه­ریزی و بهره­برداری در شبکه قدرت استفاده می­شود.

ابزار پخش بار با پاسخ به ورودی­های توان تزریقی ژنراتور، بار و توپولوژی شبکه، متغیرهای حالت شبکه و توان­های عبوری از خطوط را در خروجی محاسبه می­کند. در پخش بار قطعی[1] سیستم قدرت، مقادیر توان­­های تولیدی ژنراتورها و مصارف بارهای سیستم و همچنین توپولوژی شبکه به صورت کاملا مشخص در نظر گرفته می­شوند. بنابراین این روش نمی­تواند عدم قطعیت موجود در بار سیستم، نرخ خروج ژنراتورها از مدار و همچنین تغییرات توپولوژی شبکه را مدل نماید. در حالی که متغیرهای حالت سیستم به دلیل احتمالی بودن بارها، خطای پیش­بینی بار و تخمین غیر دقیق پارامترهای سیستم، دارای طبیعت متغیر است. روش پخش بار احتمالی[2]، راه حل موثری جهت ورودی­های غیر قطعی با دانستن مشخصات آماری آن­ها می­باشد.

با تحول در سیستم­های قدرت به دلیل نفوذ منابع انرژی پراکنده و عدم کنترل بر روی محرک­های طبیعی در برخی از این منابع، همانند توربین­های بادی و سیستم­های فوتوولتائیک[3]، یک پخش بار معمولی، متغیرهای حالت سیستم را در یک بازه زمانی محدود معین می­کند. با گسترش تولیدات پراکنده در شبکه قدرت، کاربرد سری زمانی تولید و مصرف در آنالیز پخش بار می­تواند مفید باشد، زیرا داده­های تولید و مصرف در یک دوره زمانی به دست می­آیند و می­توانند به صورت یک سری زمانی نوشته شوند ]1[.

در یک سیستم قدرت بارها تغییر می­کنند و توزیع آماری و ارتباط بین آن­ها باید مدل شود. بر خلاف آنالیز پخش بار احتمالی که داده­های ورودی آن­ها از توزیع­های آماری حاصل می­شود، در این جا از سری زمانی تولید و مصرف به طور مستقیم استفاده می­گردد. در این تحقیق سعی بر معرفی پخش بار سری زمانی و همچنین استفاده از مدلسازی سری زمانی برای برخی پارامترهای با ماهیت گسسته همچون تپ ترانس، وضعیت بانک های خازنی و توان خروجی واحدهای تولید پراکنده [4]CHP در سیستم قدرت می باشد.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
  • ۰
  • ۰

تخمین پارامترهای شبکه قدرت بر اساس کمیات بهره­برداری اندازه­گیری شده بهنگام با استفاده از واحدهای اندازه­گیری فازوری جایابی شده به کمک الگوریتم ژنتیک

 

پایان نامه کارشناسی ارشد مهندسی برق قدرت

گرایش قدرت

 

 

 

استادراهنما:

محمد رضا آقا محمدی

 

دی­ماه 1392

تکه هایی از متن به عنوان نمونه :

چکیده

 

برنامه­ریزی توسعه شبکه، برنامه­ریزی بهره­برداری و یافتن راهکارهایی برای بهبود امنیت و عملکرد اقتصادی سیستم قدرت همگی نیازمند انجام مطالعات سیستم می­باشند. ضروری­ترین قدم در انجام این مطالعات، مدل­سازی شبکه بوده که خود نیازمند اطلاعات دفیق از پارامترهای امپدانسی خطوط و ترانسفورماتورها است. این پارامترها می­توانند تحت شرایط کاری و محیطی و یا عمر تجهیزات تغییر نمایند. بنابراین نیازمند تخمین پارامترهای شبکه به صورت بهنگام خواهیم بود. در سال­های اخیر تخمین پارامترهای شبکه به صورت بهنگام براساس اطلاعات کمیات بهره­برداری، موضوعی است که با بکارگیری واحدهای اندازه­گیری فازوری مورد توجه واقع شده است. در این پایان­نامه، روش پیشنهادی قادر است که با استفاده از 3 نوبت اندازه­گیری از کمیات­ ولتاژ و جریان در ابتدای دوخط متوالی، پارامترهای آن دو خط و همچنین ولتاژ شین میانی را تخمین بزند. بوسیله این الگوریتم می­توان به طور همزمان به تخمین متغیرهای حالت و پارامترهای امپدانسی شبکه پرداخت. مزیت این روش نسبت به روش­های دیگر این است که به تعداد کمتری از دستگاه­های اندازه­گیری نیاز دارد. در این پایان­نامه ابتدا به معرفی الگوریتم تخمین حالت-پارامتر پرداخته شده و سپس با توجه به الگوریتم ارائه­شده به جایابی بهینه واحدهای اندازه­گیری فازوری پرداخته خواهد شد. در پایان، جایابی بهینه واحدهای اندازه­گیری فازوری و الگوریتم پیشنهادی تخمین حالت-پارامتر بر روی شبکه 39 باسه IEEE به عنوان شبکه آزمون پیاده­سازی شده­است.

 

واژه‌های کلیدی — تخمین پارامتر؛ تخمین حالت؛ کمیات بهره­برداری؛ واحدهای اندازه­گیری فازوری؛ جایابی بهینه PMU

 

فهرست

فصل اول: مقدمه. 1

1-1- مقدمه 2

فصل دوم: مروری بر منابع و پیشینه­ی تحقیق 5

2-1- مقدمه 6

2-2- روش تخمین پارامتر با استفاده از الگوریتم تخمین حالت….. 7

2-2-1- تخمین حالت 9

2-2-2- محاسبه خطای پارامتر به روش آنالیز حساسیت 11

2-2-3- محاسبه خطای پارامتر به روش گسترش بردار حالت 15

2-3- روش مستقیم تخمین پارامتر 20

2-3-1- مدل خطوط انتقال 22

2-3-2- مدل ترانسفورماتور 25

2-3-3- الگوریتم تخمین پارامتر در روش مستقیم 27

2-4- جایابی بهینه واحدهای اندازه‌گیری فازوری. 27

2-4-1- روش توپولوژیکی تحلیل مشاهده­پذیری 29

2-5- نتیجه­گیری 31

فصل سوم: الگوریتم ارائه­شده برای تخمین پارامتر و جایابی بهینه واحد اندازه‌گیری فازوری…………………………….32

3-1- مقدمه 33

3-2- الگوریتم تخمین حالت- پارامتر 34

3-2-1- بررسی نحوه عملکرد الگوریتم تخمین حالت- پارامتر 35

3-3- جایابی بهینه واحدهای اندازه‌گیری فازوری. 38

3-3-1- توصیف کلی الگوریتم جایابی بهینه واحد اندازه‌گیری فازوری 40

فصل چهارم: نتایج شبیه­سازی……… 51

4-1- مقدمه 52

4-2- نتایج بدست آمده برای جایابی بهینه واحدهای اندازه‌گیری فازوری 53

4-2-1- نتایج جایابی بهینه واحدهای اندازه‌گیری فازوری به منظور تخمین حالت سیستم 53

4-2-2- نتایج جایابی بهینه واحدهای اندازه‌گیری فازوری به منظور تخمین حالت و پارامترهای                     سیستم به طور همزمان…………………………………………………………………………………………………………. 57

4-2-3- نتایج جایابی بهینه واحدهای اندازه‌گیری فازوری با در نظر گرفتن شین­های تزریق صفر 61

4-3- ارزیابی دقت تخمینگر پارامترهای سیستم …………………………………………………………………………………………66

4-3-1- بررسی تأثیر تعداد نمونه­گیری­ها بر دقت تخمین 66

4-3-2- بررسی تأثیر فاصله نمونه‌گیری‌ها بر دقت تخمین 68

4-3-3- تخمین پارامترهای یک خط بوسیله ترکیب‌های مختلف 75

فصل پنجم: جمع­بندی و پیشنهادها 78

5-1- جمع‌بندی 79

5-2- پیشنهاد‌ها 81

مراجع………………….. 82

پیوست…………………………………………………………………………………………………………………………84

 

 

 


فصل 1-                                        فصل اول

 

مقدمه

 

1-1-     مقدمه

برنامه­ریزی توسعه شبکه، برنامه­ریزی بهره­برداری و یافتن راهکارهایی برای بهبود امنیت و عملکرد اقتصادی سیستم قدرت همگی نیازمند انجام مطالعات سیستم می­باشند. ضروری­ترین قدم در انجام این مطالعات، مدل‌سازی شبکه بوده که خود نیازمند اطلاعات دقیق از پارامترهای امپدانسی خطوط و ترانسفورماتورها است. تخمین پارامترهای شبکه به صورت بهنگام بر اساس اطلاعات کمیات بهره­برداری موضوعی است که با به‌کارگیری واحدهای اندازه­گیری فازوری مورد توجه واقع شده است.

تخمین پارامتر[1] روندی است که طی آن یک یا چند پارامتر شبکه که درستی آن‌ها مشخص نیست، تخمین زده می­شوند. مقادیر صحیح پارامترها برای عملکرد امن و اقتصادی سیستم قدرت مورد نیاز است. بیشتر کاربردهای اقتصادی و امنیتی شبکه به مقادیر دقیق پارامترهای شبکه نیاز دارد. این در حالی است که پایگاه داده­ها اغلب دارای پارامترهای نادقیق هستند. خطای پارامترها ممکن است به دلایل زیر باشد:

  • اطلاعات نادقیقی که سازنده تجهیزات در اختیار مشتری قرار می­دهد.
  • تغییرات در شبکه که به اطلاع اپراتورهای پایگاه داده نرسیده است.
  • عملکرد شبکه در شرایطی متفاوت از فرضیات ایده­آلی که برای محاسبات ریاضی فرض شده است.
  • نادقیق بودن دستگاه‌های اندازه­گیری­

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

  • admin admin
Cryptography Entrepreneurs Centralbanks Symbol
 از کرم گریم سفید کننده صورت چگونه استفاده کنیم
 راهنمای خرید لباس عروس
   

با این حال، بازده استیبل کوین بستگی داردروی سکه انتخابی و نوع سپرده شما.

Mortgagefraud HMTreasury Venturecapital Ethereum MXC 価格 ( MXC ) Contagion PieterWuille Relativevalue What Is a DAO? Gas Price Metatransaction John Adler BitcoinETF Deflation Token Swap 1hr Accounting Token SHIB CAD Requests jackmallers AdairTurner   The MBOX Token SaudiArabia CaitlinLong Winding Down How-to Guides arkinvestmentmanagment Basisrisk Algorithmics FTSE100   JayClayton Raiden Network HI Price ( HI ) Exchanges Mining Rewards BitcoinMiner ConsenSys Ledger ALGO EUR Basistrading Digitalassets International Protiviti Blockchain SpeedyTrial Giá NEM ( XEM ) Composable Token BTC CNY ETH USD IceClearCredit MartyBent BitcoinATM Fueloil DBSBank Crypto Casey Regulation ManGroup Conferences BGCPartners Pricerisk California Mining Rig هدایای تبلیغاتی Tier1capital ETH NZD Metatransaction ErisExchange Swedbank Relativevalue Keylogger   Euroclear Investmentbanks SLP GBP Lido Finance Unchainedcapital Terrorism What Is Web 3.0? SKILL CHF ERC-721 Secure Element LTC ZAR Venture Capital MonetaryPolicy SHIB BCH SouthAfrica

RiskMetrics Recession Investing XMR RUB Cryptoasset GoldmanSachs Relativevalue

SLP PHP Spot Trading

 

FTSERussell

آلیاژ های پلیمری مفهوم اعتماد اجتماعی دعوی تصرف عدوانی مقدار مدعی به افزایش محافظه کاری سود بازارگرایی حقوق موضوعه ایران ارزیابی مالی غیرسندرمی تاپسیس تفکر انتقادی عدم تقارن زمانی سود اسید پاشی حقوق بین الملل محیط زیست چک تضمین شده آموزش گروهی فرهنگ اشتغال بانوان رادیولوژی سیستم دسته‌بند فازی کانون بانکها ضابطان دادگستری کمبود توجه مسئولیت اجتماعی فریقین از هم گسیختگی خانوادگی نشانگان روانشناختی منابع سازمان روان شناسی تمرین مقاومتی جو سازمانی سیاست جنائی تقویت روحیه کارآفرینی تغییر جنسیت بیزین دینامیک چرخش اجباری یاد داری اختلال سلو پروانه کسب چرخه عمر شرکت­ها والدین معتاد شرط صفت مصارف روستایی تجارت الکترونیکی ارزش کالا جنس مخالف عروق کرونری ورشکستگی مالی خلاقیت کارکنان دانش بومی Fair Ness توسعه انسانی معیارهای ریسک نقدینگی توسعه سیاسی برائت از جرایم اراضی بایر مدیریت خدمات بهداشتی و درمانی صادرات مصنوعات بازار‌گرائی دلالت های اخلاق نوسانات سود شرکت ها جبران خسارت ناشی از جرم قاعده احسان جریانات نقدی سب رهبری کشف دانش افزوده اقتصادی نرخ موثر مالیات سند رسمی مالکیت ضریب واکنش سود کیفر حبس رسالت مطبوعات اجتماع مدار هالت وینترز محل سکونت تحقیق رشته کامپیوتر ریزماهواره ادراک زمان مدیریت پروژه قوانین حضانت قوانین فعلی بافت های شهری یکپارچه سازی اعتماد فعل زیانبار تعقیب اثر بخشی مدارس آزادی عمل مدل EFQM تقوای خدمت تحلیل رفتار خرید مشتری رافع وصف متخلفانه AHP- TOPSIS مدت عده طلاق مسئولیت کیفری غذادهی مجدد نیازمندی‌های عملیاتی نادر خاکی جرایم خانوادگی بهره هوشی پرچم رسمی ایران روش TOPSIS عملکرد سازمانهای خصوصی ژن هورمون خالص دارایی منابع زغال سنگ مزایده ژیروسکوپ علل عدم توسعه بیمه های اشخاص صادق هدایت زنان شاغل نظریه عقل عملیات مالی درشت دانه سینمای ایران اسناد خزانه آموزش علمی شیوه های جبران خسارت درآمد کافی خوداتکایی علل سرقت جذب دانش خواص اپتیکی حقوق اشخاص گزینش گری در دین تصمیمگیری تعهدسازمانی رژیم تحریم دادرسی افتراقی ژئوفیزیک مؤلفه های انگیزش تحصیلی کمیسیون نظارت ارشد ها استرس زدایی ریسک های زنجیره سیستمهای چند عامله مدیریت صنعتی پایانه های تحریر ترکه مؤسسات فرهنگی جایگاه بورس کرامت انسانی متغیرهای زیست شناختی کیفر تکمیلی تحلیل پایداری تونل وثیقه های مدنی اوراق بهادار توانمندسازی اقتصادی سیل مدیریت کیفیت فراگیر در آموزش مدل سروکوال مطالعه تطبیقی حقوق داده کاوی شیوه شناختی- رفتاری خودکنترلی تعیین مجازات سود مشمول مالیات بیوتکنولوژی کشاورزی خودمدیریتی شرکت مختلط سهامی زندگی روستاییان شیلات ایستگاه‌های آتش‌نشانی ویل دعاوی سرمایه شرکت های پذیرفته شده تنش شوری مجرمین خطرناک ملاک تعیین قیمت سازه چوب افزایش بهره‌وری تحقیق رشته مدیریت ارتکاب جـرم اعتبار رشد چند حسگری درآمد اختصاصی بررسی تجربی DEMATEL رشد عملکرد سیستم بانکی سازمان دامپزشکی تحجیر شرایط احساسی تصویر برند حسین کرد سوانح طبیعی بانکداری آنلاین مدیریت کلاس عملکردنواوری تقارن اطلاعاتی توسعه گردشگری شرکت های سهامی عام تفاله انگور مواد اپیوئیدی ارشد نرم افزار مرتع داری قراردادهای بیمه کالای امانی مزیت رقابتی جذب مشتریان حق مرغوبیت سطوح دانشی نوع قلمه استراتژی های بازاریابی فسخ تکرار جرم زندگی کاری شخصیت بزهکار روش بدیعه پردازی ضمان درک رفتارهای شهروندی محصورسازی مستخدم رسمی احیای زمین مدلول عقد قرار موقوفی سیاست تقسیم سود نسبت پرداخت سود حفظ مشتری بازاریابی ارتباطی مدیریت مسکن رویکرد ارتباطی ستیر حکم نهایی مدیریت تجارت عوامل گذار آمیخته سطح بلوغ الکترونیک علوفه‏ ای موانع خلاقیت فردی فرض ثلث ترکه نانو کامپوزیت ها اضطراب سلامت تورم قوانین کیفری مولفه‌های خلاقیت سازگاری عاطفی ارزیابی توانها عزل وکیل تنوع فرهنگی سازمان دولتی دینامیکی دیوان بین المللی بارگیری و تخلیه آموزش مدارا ارشد حقوق انتظارات جنسی ریسک قابل پذیرش وسواس مذهبی سود سهام نقدی بانک مسکن سازمان ذوب آهن اختلال هویت جنسی ارشد کامپیوتر نگرش والدین تلفن همراه سازمانهای ایرانی آدیپوکاین مددکاری فزون‌کنشی بزرگ‌سال BMI افشای اطلاعات مالی دندانپزشکی رفتار مصرف کنندگان اختلافات گروه های تکفیری پروژه های تحقیق ارشد فیزیک تاخیرات پروژه فرصت های کارآفرینانه نسب وارث نقش جنسی تحصیلات کلاسیک سود بازرگانی ارائه مدل عملکرد برند بیوفیزیک ساختار های مالکیت کارخانجات ریسندگی و بافندگی جوجه های نر مدل سازی مدیریت متن کامل کامپیوتر عوارض نوسازی استراتژیهای لان سنجش و آموزش موانع اداری کودکان مبتلا سندرم داون تحلیل رفتار ژئوپولیتیکی رشد اجتماعی بیمه تامین اجتماعی مشکلات تحصیلی حرکت نیترات انعطاف پذیری شناختی روانپزشکی هیدروپونیک مردسالاری مواد مخدر توابع شکافت ورزش شهروندی رضایت جنسی اهدای جنین نکاح منقطع رفتارمسالمت آمیز تدریس اثربخش سودآوری شعب بانک انسان شناسی عدالت توزیعی رتباطات سازمانی عدم قطعیت اطلاعات سرمایه روانشناختی تنگدستی مالی سبک مشارکتی آنالیز اجزای اصلی(PCA)